This paper considers a way of measuring a process capability index in order to obtain the geometric tolerance of a pattern of position elements according to the ASME Y14.5 standard. The number of elements present in the pattern, as well as its material condition (least LMC or maximum MMC), are taken into consideration during the analysis. An explicit mathematical model will be developed to identify the distribution functions (PDF and CDF) of defects on the location and diameter. Using these distributions and the Hasofer–Lind index, we will arrive at a new definition of process capability—meaning the value of tolerances that can meet the threshold of x% compliance. Finally, our method is validated using a variety of typical case studies.
Issue Section:
Research Papers
References
1.
Dowling
, M. M.
, Griffin
, P. M.
, Tsui
, K. L.
, and Zhou
, C.
, 1997, “Statistical Issues in Geometric Feature Inspection Using Coordinate Measuring Machines
,” Technometrics
, 39
(1
), pp. 3
–17
.2.
Cox
, N. D.
, 1979, “Tolerance Analysis by Computer
,” J. Quality Technol.
, 11
(1
), pp. 80
–87
.3.
Taam
, W.
, Subbaiah
, P.
, and Liddy
, J. W.
, 1993, “A Note on Multivariate Capability Indices
,” J. Appl. Stat.
, 20
(3
), pp. 339
–351
.4.
Polansky
, A. M.
, 2001, “A Smooth Nonparametric Approach to Multivariate Process Capability
,” Technometrics
, 43
(1
), pp. 199
–211
.5.
Hawkins
, D. M.
, 1991, “Multivariate Quality Control Based on Regression-Adjusted Variables
,” Technometrics
, 33
(1
), pp. 61
–75
.6.
Montgomery
, D. C.
, 2005, Introduction to Statistical Quality Control
, Wiley
, New York
.7.
Polansky
, A. M.
, 2005, “A General Framework for Constructing Control Charts
,” Qual. Reliab. Eng. Int.
, 21
(1
), pp. 633
–653
.8.
Chen
, H.
, 1994, “A Multivariate Process Capability Index Over a Rectangular Solid Tolerance Zone
,” Stat. Sin.
, 4
, pp. 749
–758
.9.
Foster
, F. J.
, Barton
, R. R.
, Gautam
, N.
, Truss
, L. T.
, and Tew
, J. D.
, 2005, “The Process-Oriented Multivariate Capability Index
,” Int. J. Prod. Res.
, 43
(1
), pp. 2135
–2148
.10.
Knowles
, G.
, March
, G.
, and Anthony
, J.
, 2002, “Evaluating Process Capability for Geometrically Toleranced Parts: A Practical Approach
,” Qual. Eng.
, 14
(1
), pp. 365
–374
.11.
Wang
, F. K.
, Hubele
, N. F.
, Lawrence
, F. P.
, Miskulin
, J. D.
, and Shahriari
, H.
, 2000, “Comparison of Three Multivariate Process Capability Indices
,” J. Quality Technol.
, 32
(1
), pp. 263
–275
.12.
Mannar
, K.
, and Ceglarek
, D.
, 2010, “Functional Capability Space and Optimum Process Adjustments for Manufacturing Processes With In-Specs Failure
,” IIE Trans.
, 42
(1
), pp. 95
–106
.13.
ASME
, 2009, Geometric and Dimensioning Tolerance, ASME Y14.5m-2009
, ASME Press
.14.
Wang
, F. K.
, and Hubele
, N. F.
, 2002, “Quality Evaluation of Geometric Tolerance Regions in Form and Location
,” Qual. Eng.
, 14
(2
), pp. 205
–211
.15.
Phillips
, M. D.
, and Cho
, B.-R.
, 1998, “Quality Improvement for Processes With Circular and Spherical Specification Regions
,” Quality Eng.
, 11
(1
), pp. 235
–243
.16.
Tahan
, S. A.
, and Levesque
, S.
, 2011, “Exploiting the Process Capability in the Statistical Estimation of the Tolerance of Location
,” Mech. Indus.
, 12
(1
), pp. 503
–512
.17.
Lebrun
, R.
, and Dutfoy
, A.
, 2009, “A Generalization of the Nataf Transformation to Distributions With Elliptical Copula
,” Probab. Eng. Mech.
, 24
(1
), pp. 172
–178
.18.
Johnson
, N. L.
, Kotz
, S.
, and Balakrishnan
, N.
, 1996, “Book Review: Continuous Univariate Distributions, Volume 2
,” Technometrics
, 38
(1
), pp. 189
–189
.19.
Hasofer
, A. M.
, and Lind
, N. C.
, 1974, “Exact and Invariant Second-Moment Code Format
,” J. Eng. Mech. Div.
, 100
(1
), pp. 111
–121
.20.
Wand
, M. P.
, and Jones
, M. C.
, 1994, “Multivariate Plug-In Bandwidth Selection
,” Comput. Stat.
, 9
(1
), pp. 97
–116
.21.
ISO/IEC
, 2004, Information Technology Process Assessment Part 5: Guidance on Use for Process Improvement and Process Capability Determination
, ISO
.22.
Bothe
, D. R.
, 2006, “Assessing Capability for Hole Location
,” Qual. Eng.
, 18
(1
), pp. 325
–331
.23.
Papoulis
, A.
, 1991, Probability, Random Variable and Stochastic Process
, 3rd ed., McGraw-Hill
, New York
.24.
Bali
, T. G.
, 2003, “The Generalized Extreme Value Distribution
,” Econ. Lett.
, 79
(3
), pp. 423
–427
.Copyright © 2012
by American Society of Mechanical Engineers
You do not currently have access to this content.