A new servo drive for electro discharge machining industrial applications is presented in this paper. The development processes of the servo feed drive have passed through three main stages. The first stage focused on design and development of a linear piezoelectric ultrasonic motor. The second one concentrated on development of an electronic driver and its embedded software. The integration, testing, and validation in electro discharge machining system, was the last stage of the development lifecycle. The linear piezoelectric ultrasonic motor consists of three main parts, the stator, rotor, and sliding element. The motor design process, basic configuration, principles of motion, finite element analysis, and experimental examination of the main characteristics are discussed in this paper. The electronic driver of the ultrasonic motor consists of two main stages, the booster and piezoelectric amplifier. The piezo amplifier consists of four output transistors, a push-pull and bridge, connected in order to achieve the necessary electrical parameters to drive and control the motor servo feed drive traveling speed. The essential experimental arrangement to implement and examine the developed ultrasonic servo feed drive in an electro discharge machining system was carried out. The initial results showed that the servo drive is able to provide: a reversible directional of motion, no-load traveling speed equal to 28 mm per s, maximum load of 0.78 N, a resolution <50 μm, and a dynamic time response <10 ms. The electron microscopic micro examination into the machined samples showed that: ultrasonic servo drive showed a clear improvement in the surface profile finish, a notable reduction in the stability, processing time, material removal rate, arcing, and short-circuiting teething phenomena. This was verified by assessing the electrode movements, the variations of the inter electrode gap voltage, current, and feedback control signals.

References

1.
Furutani
,
K.
, and
Furuta
,
A.
,
2008
, “
Evaluation of Driving Performance of Piezoelectric Actuator With Current Pulse
,” Proceedings of the 10th
IEEE
International Workshop on Advanced Motion Control, pp.
387
392
.10.1109/AMC.2008.4516098
2.
Zhang
,
F.
,
Chen
,
W.
,
Lin
,
J.
, and
Wang
,
Z.
,
2005
, “
Bidirectional Linear Ultrasonic Motor Using Longitudinal Vibrating Transducers
,”
IEEE Trans. Ultrasonics, Ferroelectr. Freq. Control
,
52
(
1
), pp.
134
138
.10.1109/TUFFC.2005.1397358
3.
Chen
,
Y.
,
Lu
,
K.
,
Zhou
,
T. Y.
,
Liu
,
T.
, and
Lu
,
C. Y.
,
2006
, “
Study of a Mini-Ultrasonic Motor With Square Metal Bar and Piezoelectric Plate Hybrid
,”
Jpn. J. Appl. Phys.
,
45
(
5B
), pp.
4780
4781
.10.1143/JJAP.45.4780
4.
Li
,
X.
,
Chen
,
W. S.
,
Tang
,
X.
, and
Liu
,
J. K.
,
2007
, “
Novel High Torque Bearingless Two-Sided Rotary Ultrasonic Motor
,”
J. Zhejiang Univ. Sci.
,
8
(
5
), pp.
786
792
.10.1631/jzus.2007.A0786
5.
Frangi
,
A.
,
Corigliano
,
A.
,
Binci
,
M.
, and
Faure
,
P.
,
2005
, “
Finite Element Modelling of a Rotating Piezoelectric Ultrasonic Motor
,”
Ultrasonics
,
43
(
9
), pp.
747
755
.10.1016/j.ultras.2005.04.005
6.
Aoyagi
,
M.
,
Tomikawa
,
Y.
, and
Takano
,
T.
,
1992
, “
Ultrasonic Motors Using Longitudinal and Bending Multimode Vibrators With Mode Coupling by External Additional Asymmetry or Internal Nonlinearty
,”
Jpn. J. Appl. Phys.
,
31
(
9B
), pp.
3077
3080
.10.1143/JJAP.31.3077
7.
Aoyagi
,
M.
, and
Tomikawa
,
Y.
,
1996
, “
Ultrasonic Motor Based on Coupled Longitudinal-Bending Vibrations of a Diagonally Symmetric Piezoelectric Ceramic Plate
,”
Electron. Commun. Jpn.
,
79
(
6
), pp.
60
67
.10.1002/ecjb.4420790607
8.
Kusakabe
,
C.
,
Yoshiro
,
T.
,
Sadayuki
,
T.
, and
Takehiro
,
T.
,
1998
, “
Effect of the Pressing Force Applied to a Rotor on Disk Type Ultrasonic Motor Driven by Self Oscillation
,”
Jpn. J. Appl. Phys.
,
37
, pp.
2966
2969
.10.1143/JJAP.37.2966
9.
Shafik
,
M.
, and
Knight
,
J.
,
2002
, “
An Investigation Into Electro Discharge Machining System Applications Using Ultrasonic Motor
,”
Proceedings of the IMC International Conference
, Queens, Belfast, Aug. 28–31.
10.
Shafik
,
M.
,
Knight
,
J.
, and
Abdalla
,
H.
,
2001
, “
Development of a New Generation of Electrical Discharge Texturing System Using an Ultrasonic Motor
,”
Proceedings of the 13th International Symposium for Electromachining (ISEM)
, Spain, May 9–11.
11.
Shafik
,
M.
,
Nyathi
,
B.
, and
Fekkai
,
S.
,
2012
, “
Computer Simulation and Modelling of Standing Wave Piezoelectric Ultrasonic Motor Using Flexural Transducer
,”
Proceedings of the ASME 2012 International Mechanical Engineering Congress and Exposition
, Houston, TX, Paper No. IMECE2012-86296.
12.
Shafik
,
M.
,
2012
, “
An Investigation Into the Influence of Ultrasonic Servo Drive Technology in Electro Discharge Machining Industrial Applications
,”
Proceedings of the ASME 2012 International Mechanical Engineering Congress and Exposition
, Houston, TX, Paper No. IMECE2012-86507.
13.
Ming
,
Y.
, and
Que
,
P. W.
,
2001
, “
Performance Estimation of a Rotary Traveling Wave Ultrasonic Motor Based on Two-Dimension Analytical Model
,”
Ultrasonics
,
39
(
2
), pp.
115
120
.10.1016/S0041-624X(00)00053-6
14.
Lebrun
,
L.
,
Gonnard
,
P.
, and
Guinet
,
M.
,
1999
, “
A Low-Cost Piezoelectric Motor Using a (1,1) Nonaxisymmetric Mode
,”
Smart Mater. Struct.
,
8
(
4
), pp.
469
475
.10.1088/0964-1726/8/4/304
15.
Takano
,
T.
,
Tomikawa
,
Y.
, and
Takano
,
C. K.
,
1999
, “
Operating Characteristics of a Same-Phase Drive-Type Ultrasonic Motor Using a Flexural Disk Vibrator
,”
Jpn. J. Appl. Phys.
,
38
(
5B
), pp.
3322
3326
.10.1143/JJAP.38.3322
16.
He
,
S.
,
Chen
,
W.
,
Tao
,
X.
, and
Chen
,
Z.
,
1998
, “
Standing Wave Bi-Directional Linearly Moving Ultrasonic Motor
,”
IEEE Trans. Ultrasonics, Ferroelectr. Freq. Control
,
45
(
5
), pp.
1133
1139
.10.1109/58.726435
17.
Newton
,
D.
,
Garcia
,
E.
, and
Horner
,
G. C.
,
1998
, “
A Linear Piezoelectric Motor
,”
Smart Mater. Struct.
,
7
(
3
), pp.
295
304
.10.1088/0964-1726/7/3/004
18.
Zhang
,
B.
, and
Zhenqi
,
Z.
,
1997
, “
Developing a Linear Piezomotor With Nanometer Resolution and High Stiffness
,”
IEEE/ASME Trans. Mechatron.
,
2
(
1
), pp.
22
29
.10.1109/3516.558855
19.
Tal
,
J.
,
1999
, “
Servomotors Take Piezoceramic Transducers for a Ride
,”
Mach. Des.
,
71
(
23
), pp.
1
3
.
20.
Tobias
,
H.
, and
Wallaschek
,
J.
,
2000
, “
Survey of the Present State of the Art of Piezoelectric Linear Motors
,”
Ultrasonics
,
38
, pp.
37
40
.10.1016/S0041-624X(99)00143-2
21.
Snitka
,
V.
,
2000
, “
Ultrasonic Actuators for Nanometer Positioning
,”
Ultrasonics
,
38
(
1–8
), pp.
20
25
.10.1016/S0041-624X(99)00086-4
22.
Nanomotion
, “
Nanomotion, A Johnson Electric Company
,” Nanomotion, Yokneam, Israel, http://www.nanomotion.net
23.
Shafik
,
M.
, and
Knight
,
J.
,
2002
, “
Computer Simulation and Modelling of an Ultrasonic Motor Using a Single Flexural Vibrating Bar
,”
Proceedings of ESM’2002 International Conference
, Germany, June 3–5.
24.
Lin
,
M. W.
,
Abatan
,
A. O.
, and
Rogers
,
C. A.
,
1994
, “
Application of Commercial Finite Codes for the Analysis of Induced Strain-Actuated Structures
,”
J. Intell. Mater. Syst. Struct.
,
5
(
6
), pp.
869
875
.10.1177/1045389X9400500621
25.
Hwang
,
W. S.
, and
Park
,
H. C.
,
1993
, “
Finite Element Modelling Piezoelectric Sensors and Actuators
,”
AIAA J.
,
31
(
5
), pp.
930
937
.10.2514/3.11707
26.
Ueha
,
S.
, and
Tomikawa
,
Y.
,
1993
,
Ultrasonic Motors Theory and Applications
,
Clarendon Press
,
London
.
27.
Ben-Yaakov
,
S.
,
Rozanov
,
E.
,
Wasserman
,
T.
,
Rafaeli
,
T.
,
Shiv
,
L.
, and
Ivensky
,
G.
,
1999
, “
A Resonant Driver for a Piezoelectric Motor
,”
Proceedings of the Power Conversion and Intelligent Motor Conference
, June, pp.
173
178
.
28.
Shafik
,
M.
,
2003
, “
Computer Aided Analysis and Design of a New Servo Control Feed Drive for EDM Using Piezoelectric USM
,” Ph.D. thesis, De Montfort University, Leicester, UK.
29.
McGeough
,
J.
, and
Rasmussen
,
H.
,
1992
, “
A Model for the Surface Texturing of Steel Rolls by Electro Discharge Machining
,”
Proc.: Math. Phys. Sci.
,
436
, pp.
155
164
.10.1098/rspa.1992.0011
30.
El-Menshawy
,
F.
, and
Ahmed
,
M. S.
,
1985
, “
Monitoring and Control of the Electrical Discharge Texturing Process for Steel Cold Mill Work Roll
,”
Proceedings of the 13th North American Research Conference
, pp.
470
475
.
31.
Simao
,
J.
,
Aspinwall
,
D.
,
El-Menshawy
,
F.
, and
Meadows
,
K.
,
2002
, “
Surface Alloying Using PM Composite Electrode Materials When Electrical Discharge Texturing Hardened AISI D2
,”
J. Mater. Process. Technol.
,
127
(
2
), pp.
211
216
.10.1016/S0924-0136(02)00144-9
32.
Simao
,
J.
,
Aspinwall
,
D.
, and
El-Menshawy
,
F.
,
1996
, “
The Effect of the EDT Processes on the Surface Integrity of Cold Mill Work Rolls
,”
Proceedings of the 37th MWSP Conference, ISS-AIME
, Vol.
33
, pp.
197
204
.
33.
El-Menshawy
,
F.
,
1990
, “
Electro-Discharge Machining Apparatus
,” U.S. Patent No. 4950860.
You do not currently have access to this content.