The atomization-based cutting fluid (ACF) spray system has recently been proposed as a cooling and lubrication solution for machining hard to machine materials (e.g., titanium alloys). On the tool rake face, the ACF spray system forms a thin film from cutting fluid that penetrates into the tool–chip interface to improve tool life. The objective of this work is to characterize this thin fluid film in terms of thickness and velocity for a set of ACF spray parameters. ACF spray experiments are performed by varying impingement angle to observe the nature of the spreading film and to determine the film thickness at different locations after impingement of the droplets. It is observed that the film spreads radially outward producing three fluid film development zones (i.e., impingement, steady, and unsteady). The steady zone is found to be between 3 and 7 mm from the focus (impingement point) of the ACF spray for the set of parameters investigated. An analytical 3D thin fluid film model for the ACF spray system has also been developed based on the Navier–Stokes equations for mass and momentum. The model requires a unique treatment of the cross-film velocity profile, droplet impingement, and pressure distributions, as well as a strong gas–liquid shear interaction. The thickness profiles predicted by the analytical film model have been validated. Moreover, the model predictions of film velocity and chip flow characteristics during a titanium turning experiment reveal that the fluid film can easily penetrate into the entire tool–chip interface with the use of the ACF spray system.

References

1.
Nath
,
C.
,
Kapoor
,
S. G.
,
DeVor
,
R.
,
Srivastava
,
A.
, and
Iverson
,
J.
,
2012
, “
Design and Evaluation of an Atomization-Based Cutting Fluid Spray System in Turning of Titanium Alloy
,”
J. Manuf. Process.
,
14
(
4
), pp.
452
459
.10.1016/j.jmapro.2012.09.002
2.
Jun
,
M.
,
Suhas
,
S.
,
DeVor
,
R.
, and
Kapoor
,
S. G.
,
2008
, “
An Experimental Evaluation of an Atomization Based Cutting Fluid Application System for Micromachining
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), p.
031118
.10.1115/1.2738961
3.
Rukosuyev
,
M.
,
Goo
,
C. S.
, and
Jun
,
M. B. G.
,
2010
, “
Understanding the Effects of the System Parameters of an Ultrasonic Cutting Fluid Application System for Micro-machining
,”
J. Manuf. Process.
,
12
, pp.
92
98
.10.1016/j.jmapro.2010.06.002
4.
Mundo
,
C.
,
Sommerfield
,
M.
, and
Tropea
,
C.
,
1994
, “
Droplet-Wall Collisions: Experimental Studies of the Deformation and Breakup Process
,”
Int. J. Multiphase Flow
,
21
(
2
), pp.
151
173
.10.1016/0301-9322(94)00069-V
5.
Yarin
,
A. L.
, and
Weiss
,
D. A.
,
1995
, “
Impact of Drops on Solid Surfaces: Self-Similar Capillary Waves, and Splashing as a New Type of Kinematic Discontinuity
,”
J. Fluid Mech.
,
283
, pp.
141
173
.10.1017/S0022112095002266
6.
Cossali
,
G. E.
,
Coghe
,
A.
, and
Marengo
,
M.
,
1997
, “
The Impact of a Single Drop on a Wetted Solid Surface
,”
Exp. Fluids
,
22
, pp.
463
472
.10.1007/s003480050073
7.
Ghai
,
I.
,
Wentz
,
J.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Samuel
,
J.
,
2010
, “
Droplet Behavior on a Rotating Surface for Atomization-Based Cutting Fluid Application in Micromachining
,”
ASME J. Manuf. Sci. Eng.
,
132
(
1
), p.
011017
.10.1115/1.4000859
8.
Pan
,
K.
, and
Hung
,
C.
,
2010
, “
Droplet Impact Upon a Wet Surface With Varied Fluid Surface Properties
,”
J. Colloid Interface Sci.
,
352
, pp.
186
193
.10.1016/j.jcis.2010.08.033
9.
Kalantari
,
D.
, and
Tropea
,
C.
,
2007
, “
Spray Impact Onto Flat Rigid Walls: Emperical Characterization and Modeling
,”
Int. J. Multiphase Flow
,
33
, pp.
525
544
.10.1016/j.ijmultiphaseflow.2006.09.008
10.
Arcoumanis
,
C.
,
Whitelaw
,
D. S.
, and
Whitelaw
,
J. H.
,
1997
, “
Gasoline Injection Against Surfaces and Films
,”
Atomization Sprays
,
7
, pp.
437
456
.
11.
Kim
,
W.
,
Kang
,
S.
, and
Rho
,
B.
,
2000
, “
Gasoline Spray Characteristics Impinging onto the Wall Surface in Suction Air Flow
,”
KSME Int. J.
,
14
(
12
), pp.
1376
1385
. 10.1007/BF03191922
12.
Tropea
,
C.
, and
Roisman
,
I.
,
2000
, “
Modeling of Spray Impact on Solid Surfaces
,”
Atomization Sprays
,
10
, pp.
387
408
.
13.
Stanton
,
D.
, and
Rutland
,
C.
,
1998
, “
Multi-Dimensional Modeling of Thin Liquid Films and Spray-Wall Interactions Resulting From Impinging Sprays
,”
Int. J. Heat Mass Transfer
,
41
, pp.
3037
3054
.10.1016/S0017-9310(98)00054-4
14.
Lee
,
S.
,
Ko
,
G.
,
Ryou
,
H.
, and
Hong
,
K.
,
2001
, “
Development and Application of a New Spray Impingement Model Considering Film Formation in a Diesel Engine
,”
KSME Int. J.
,
14
(
7
), pp.
951
961
.10.1007/BF03185273
15.
Trujilo
,
M.
, and
Lee
,
C. F.
,
2003
, “
Modeling Film Dynamics in Spray Impingement
,”
ASME J. Fluids Eng.
,
125
, pp.
104
112
.10.1115/1.1523064
16.
Spathopoulou
,
M.
,
Gavaises
,
M.
,
Theodorakakos
,
A.
, and
Yanagihara
,
H.
,
2009
, “
Formation and Development of Wall Liquid Films During Impaction of Gasoline Fuel Sprays
,”
Atomization Sprays
,
19
, pp.
701
726
.10.1615/AtomizSpr.v19.i8.10
17.
Yarin
,
A. L.
,
2006
, “
Drop Impact Dynamics: Splashing, Spreading, Receding, Bouncing…
,”
Annu. Rev. Fluid Mech.
,
38
, pp.
159
192
.10.1146/annurev.fluid.38.050304.092144
18.
Hurlburt
,
E.
, and
Newell
,
T.
,
1995
, “
Optical Measurement of Liquid Film Thickness and Wave Velocity in Liquid Film Flows
,”
Exp. Fluids
,
21
(
5
), pp.
357
362
.
19.
Moreira
,
A.
,
Moita
,
A.
, and
Panao
,
M. R.
,
2010
, “
Advances and Challenges in Explaining Fuel Spray Impingement: How Much of Single Droplet Research is Useful?
,”
Prog Energy Combust. Sci.
,
36
, pp.
554
558
.10.1016/j.pecs.2010.01.002
You do not currently have access to this content.