Abstract

The use of magnesium (Mg) alloy has been continuously on the rise with numerous expanded application in transportation/aerospace industries due to their lightweight and other areas, such as biodegradable medical implants. It was shown recently that machining can be used to improve the functional performance of Mg-based products/components, such as corrosion resistance, through engineered surface integrity. In this paper, the behavior of AZ31B Mg alloy in cryogenic machining was discussed firstly. The surface integrity can be significantly improved by introducing the ultrafine grained (UFG) layer due to the severe plastic deformation (SPD) effect during cryogenic machining. The mechanisms of microstructure evolution and plastic deformation were analyzed based on the experimental findings in literature. A physics-based constitutive model involving material plasticity and grain refinement is developed based on both slip and twinning mechanisms and successfully implemented in a finite-element (FE) analysis with multiple cutting passes to predict the microstructure evolution by nanocrystalline grain refinement and other improvement of the surface integrity in the cryogenic machining of AZ31B Mg alloy. With a more quantitative assessment, the FE model results are further discussed for grain refinement, changes in microhardness, residual stresses, and slip/twinning mechanism with the apparent SPD taking place due to rapid cryogenic cooling.

References

1.
Watarai
,
H.
,
2006
, “
Trend of Research and Development of Magnesium Alloys—Reducing the Weight of Structural Materials in Motor Vehicles
,”
Sci. & Tech. Trends Quarterly Rev.
18
, pp.
84
97
.
2.
Witte
,
F.
,
2010
, “
The History of Biodegradable Magnesium Implants: A Review
,”
Acta Biomater.
,
6
(
5
), pp.
1680
1692
.
3.
Polmear
,
I. J.
,
1994
, “
Magnesium Alloys and Applications
,”
Mater. Sci. Technol.
,
10
(
1
), pp.
1
16
.
4.
Wojtowicz
,
N.
,
Danis
,
I.
,
Monies
,
F.
,
Lamesle
,
P.
, and
Chieragati
,
R.
,
2013
, “
The Influence of Cutting Conditions on Surface Integrity of a Wrought Magnesium Alloy
,”
Procedia Eng.
,
63
, pp.
20
28
.
5.
Rubio
,
E.
,
Villeta
,
M.
,
Carou
,
D.
, and
Saá
,
A.
,
2014
, “
Comparative Analysis of Sustainable Cooling Systems in Intermittent Turning of Magnesium Pieces
,”
Int. J. Precis. Eng. Manuf.
,
15
(
5
), pp.
929
940
.
6.
Kim
,
B.
,
Park
,
C. H.
,
Kim
,
H. S.
,
You
,
B. S.
, and
Park
,
S. S.
,
2014
, “
Grain Refinement and Improved Tensile Properties of Mg–3Al–1Zn Alloy Processed by Low-Temperature Indirect Extrusion
,”
Scr. Mater.
,
76
, pp.
21
24
.
7.
Jawahir
,
I. S.
,
Brinksmeier
,
E.
,
M'Saoubi
,
R.
,
Aspinwall
,
D. K.
,
Outeiro
,
J. C.
,
Meyer
,
D.
,
Umbrello
,
D.
, and
Jayal
,
A. D.
,
2011
, “
Surface Integrity in Material Removal Processes: Recent Advances
,”
CIRP Ann. Manuf. Technol.
,
60
(
2
), pp.
603
626
.
8.
Staiger
,
M. P.
,
Pietak
,
A. M.
,
Huadmai
,
J.
, and
Dias
,
G.
,
2006
, “
Magnesium and Its Alloys as Orthopedic Biomaterials: A Review
,”
Biomaterials
,
27
(
9
), pp.
1728
1734
.
9.
Wang
,
Z. Y.
, and
Rajurkar
,
K. P.
,
2000
, “
Cryogenic Machining of Hard-to-Cut Materials
,”
Wear
,
239
(
2
), pp.
168
175
.
10.
Paul
,
S.
,
Dhar
,
N.
, and
Chattopadhyay
,
A.
,
2001
, “
Beneficial Effects of Cryogenic Cooling Over Dry and Wet Machining on Tool Wear and Surface Finish in Turning AISI 1060 Steel
,”
J. Mater. Process. Technol.
,
116
(
1
), pp.
44
48
.
11.
Pusavec
,
F.
,
Hamdi
,
H.
,
Kopac
,
J.
, and
Jawahir
,
I. S.
,
2011
, “
Surface Integrity in Cryogenic Machining of Nickel Based Alloy—Inconel 718
,”
J. Mater. Process. Technol.
,
211
(
4
), pp.
773
783
.
12.
Ambrosy
,
F.
,
Zanger
,
F.
,
Schulze
,
V.
, and
Jawahir
,
I. S.
,
2014
, “
An Experimental Study of Cryogenic Machining on Nanocrystalline Surface Layer Generation
,”
Procedia CIRP
,
13
, pp.
169
174
.
13.
Umbrello
,
D.
,
Yang
,
S.
,
Dillon
,
O. W.
, and
Jawahir
,
I. S.
,
2012
, “
Effects of Cryogenic Cooling on Surface Layer Alterations in Machining of AISI 52100 Steels
,”
Mater. Sci. Technol.
,
28
(
11
), pp.
1320
1331
.
14.
Outeiro
,
J. C.
,
Rossi
,
F.
,
Fromentin
,
G.
,
Poulachon
,
G.
,
Germain
,
G.
, and
Batista
,
A. C.
,
2013
, “
Process Mechanics and Surface Integrity Induced by Dry and Cryogenic Machining of AZ31B-O Magnesium Alloy
,”
Procedia CIRP
,
8
, pp.
487
492
.
15.
Pu
,
Z.
,
Outeiro
,
J. C.
,
Batista
,
A. C.
,
Dillon
,
O. W.
,
Puleo
,
D. A.
, and
Jawahir
,
I. S.
,
2012
, “
Enhanced Surface Integrity of AZ31B Mg Alloy by Cryogenic Machining Towards Improved Functional Performance of Machined Components
,”
Int. J. Mach. Tools Manuf.
,
56
, pp.
17
27
.
16.
Turnbull
,
A.
,
Mingard
,
K.
,
Lord
,
J. D.
,
Roebuck
,
B.
,
Tice
,
D. R.
,
Mottershead
,
K. J.
,
Fairweather
,
N. D.
, and
Bradbury
,
A. K.
,
2011
, “
Sensitivity of Stress Corrosion Cracking of Stainless Steel to Surface Machining and Grinding Procedure
,”
Corros. Sci.
,
53
(
10
), pp.
3398
3415
.
17.
Bermingham
,
M. J.
,
Kirsch
,
J.
,
Sun
,
S.
,
Palanisamy
,
S.
, and
Dargusch
,
M. S.
,
2011
, “
New Observations on Tool Life, Cutting Forces and Chip Morphology in Cryogenic Machining Ti–6Al–4V
,”
Int. J. Mach. Tools Manuf.
,
51
(
6
), pp.
500
511
.
18.
Denkena
,
B.
, and
Lucas
,
A.
,
2007
, “
Biocompatible Magnesium Alloys as Absorbable Implant Materials—Adjusted Surface and Subsurface Properties by Machining Processes
,”
CIRP Ann. Manuf. Technol.
,
56
(
1
), pp.
113
116
.
19.
Wang
,
H.
,
Estrin
,
Y.
,
Fu
,
H.
,
Song
,
G.
, and
Zúberová
,
Z.
,
2007
, “
The Effect of Pre-Processing and Grain Structure on the Bio-Corrosion and Fatigue Resistance of Magnesium Alloy AZ31
,”
Adv. Eng. Mater.
,
9
(
11
), pp.
967
972
.
20.
Rotella
,
G.
,
Dillon
,
O. W.
,
Umbrello
,
D.
,
Settineri
,
L.
, and
Jawahir
,
I. S.
,
2013
, “
Finite Element Modeling of Microstructural Changes in Turning of AA7075-T651 Alloy
,”
SME J. Manuf. Process.
,
15
(
1
), pp.
87
95
.
21.
Tabei
,
A.
,
Shih
,
D. S.
,
Garmestani
,
H.
, and
Liang
,
S. Y.
,
2016
, “
Dynamic Recrystallization of Al Alloy 7075 in Turning
,”
ASME J. Manuf. Sci. Eng.
,
138
(
7
), p.
071010
.
22.
Jafarian
,
F.
,
Imaz Ciaran
,
M.
,
Umbrello
,
D.
,
Arrazola
,
P. J.
,
Filice
,
L.
, and
Amirabadi
,
H.
,
2014
, “
Finite Element Simulation of Machining Inconel 718 Alloy Including Microstructure Changes
,”
Int. J. Mech. Sci.
,
88
, pp.
110
121
.
23.
Pu
,
Z.
,
Umbrello
,
D.
,
Dillon
,
O. W.
,
Lu
,
T.
,
Puleo
,
D. a.
, and
Jawahir
,
I. S.
,
2014
, “
Finite Element Modeling of Microstructural Changes in Dry and Cryogenic Machining of AZ31B Magnesium Alloy
,”
SME J. Manuf. Process.
,
16
(
2
), pp.
335
343
.
24.
Umbrello
,
D.
,
Caruso
,
S.
, and
Imbrogno
,
S.
,
2016
, “
Finite Element Modelling of Microstructural Changes in Dry and Cryogenic Machining AISI 52100 Steel
,”
Materials Science and Technology
(Published online).
25.
Knezevic
,
M.
,
Levinson
,
A.
,
Harris
,
R.
,
Mishra
,
R. K.
,
Doherty
,
R. D.
, and
Kalidindi
,
S. R.
,
2010
, “
Deformation Twinning in AZ31: Influence on Strain Hardening and Texture Evolution
,”
Acta Mater.
,
58
(
19
), pp.
6230
6242
.
26.
Sun
,
H. Q.
,
Shi
,
Y.-N.
,
Zhang
,
M.-X.
, and
Lu
,
K.
,
2007
, “
Plastic Strain-Induced Grain Refinement in the Nanometer Scale in a Mg Alloy
,”
Acta Mater.
,
55
(
3
), pp.
975
982
.
27.
Pu
,
Z.
,
Song
,
G.-L.
,
Yang
,
S.
,
Outeiro
,
J. C.
,
Dillon
,
O. W.
,
Puleo
,
D. a.
, and
Jawahir
,
I. S.
,
2012
, “
Grain Refined and Basal Textured Surface Produced by Burnishing for Improved Corrosion Performance of AZ31B Mg Alloy
,”
Corros. Sci.
,
57
, pp.
192
201
.
28.
Ding
,
H.
, and
Shin
,
Y. C.
,
2012
, “
A Metallo-Thermomechanically Coupled Analysis of Orthogonal Cutting of AISI 1045 Steel
,”
ASME J. Manuf. Sci. Eng.
,
134
(
5
), p.
051014
.
29.
Estrin
,
Y.
,
Tóth
,
L. S.
,
Molinari
,
A.
, and
Bréchet
,
Y.
,
1998
, “
A Dislocation-Based Model for all Hardening Stages in Large Strain Deformation
,”
Acta Mater.
,
46
(
15
), pp.
5509
5522
.
30.
Tóth
,
L. S.
,
Molinari
,
A.
, and
Estrin
,
Y.
,
2002
, “
Strain Hardening at Large Strains as Predicted by Dislocation Based Polycrystal Plasticity Model
,”
ASME J. Eng. Mater. Technol.
,
124
(
1
), pp.
71
77
.
31.
Ding
,
H.
,
Shen
,
N.
, and
Shin
,
Y. C.
,
2011
, “
Modeling of Grain Refinement in Aluminum and Copper Subjected to Cutting
,”
Comput. Mater. Sci.
,
50
(
10
), pp.
3016
3025
.
32.
Ding
,
H.
, and
Shin
,
Y. C.
,
2014
, “
Dislocation Density-Based Grain Refinement Modeling of Orthogonal Cutting of Titanium
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041003
.
33.
Ding
,
H.
,
Shen
,
N.
, and
Shin
,
Y. C.
,
2012
, “
Predictive Modeling of Grain Refinement During Multi-Pass Cold Rolling
,”
J. Mater. Process. Technol.
,
212
(
5
), pp.
1003
1013
.
34.
Wang
,
L.
,
Fan
,
Y.
,
Huang
,
G.
, and
Huang
,
G.
,
2003
, “
Flow Stress and Softening Behavior of Wrought Magnesium Alloy AZ31B at Elevated Temperature
,”
Trans. Nonferrous Metals Soc. China
,
13
(
2
), pp.
335
338
.
35.
Liu
,
J.
,
Cui
,
Z.
, and
Li
,
C.
,
2008
, “
Modelling of Flow Stress Characterizing Dynamic Recrystallization for Magnesium Alloy AZ31B
,”
Comput. Mater. Sci.
,
41
(
3
), pp.
375
382
.
36.
Ulacia
,
I.
,
Salisbury
,
C. P.
,
Hurtado
,
I.
, and
Worswick
,
M. J.
,
2011
, “
Tensile Characterization and Constitutive Modeling of AZ31B Magnesium Alloy Sheet Over Wide Range of Strain Rates and Temperatures
,”
J. Mater. Process. Technol.
,
211
(
5
), pp.
830
839
.
37.
Ulacia
,
I.
,
Dudamell
,
N. V.
,
Gálvez
,
F.
,
Yi
,
S.
,
Pérez-Prado
,
M. T.
, and
Hurtado
,
I.
,
2010
, “
Mechanical Behavior and Microstructural Evolution of a Mg AZ31 Sheet at Dynamic Strain Rates
,”
Acta Mater.
,
58
(
8
), pp.
2988
2998
.
38.
Li
,
W.
,
Zhao
,
G.
,
Ma
,
X.
, and
Gao
,
J.
,
2012
, “
Flow Stress Characteristics of AZ31B Magnesium Alloy Sheet at Elevated Temperatures
,”
Int. J. Appl. Phys. Math.
,
2
(
2
), pp.
83
88
.
39.
Giraud
,
E.
,
Rossi
,
F.
,
Germain
,
G.
, and
Outeiro
,
J. C.
,
2013
, “
Constitutive Modelling of AZ31B-O Magnesium Alloy for Cryogenic Machining
,”
Procedia CIRP
,
8
, pp.
522
527
.
40.
Watanabe
,
H.
,
Ishikawa
,
K.
, and
Mukai
,
T.
,
2007
, “
High Strain Rate Deformation Behavior of Mg–Al–Zn Alloys at Elevated Temperatures
,”
Key Eng. Mater.
,
340–341
, pp.
107
112
.
41.
Sellars
,
C. M.
,
1978
, “
Recrystallization of Metals During Hot Deformation
,”
Philos. Trans. R. Soc. London Ser. A
,
288
(
1350
), pp.
147
158
.
42.
Mcqueen
,
H. J.
, and
Jonas
,
J. J.
,
1984
, “
Recent Advances in Hot Working: Fundamental Dynamic Softening Mechanisms
,”
J. Appl. Metalwork.
,
3
(
3
), pp.
233
241
.
43.
Meyers
,
M. A.
,
Vöhringer
,
O.
, and
Lubarda
,
V. A.
,
2001
, “
The Onset of Twinning in Metals: A Constitutive Description
,”
Acta Mater.
,
49
(
19
), pp.
4025
4039
.
44.
Meyers
,
M. A.
,
Benson
,
D. J.
,
Vo
,
O.
,
Kad
,
B. K.
, and
Xue
,
Q.
,
2002
, “
Constitutive Description of Dynamic Deformation: Physically-Based Mechanisms
,”
Mater. Sci. Eng.
,
A322
(
1–2
), pp.
194
216
.
45.
Koike
,
J.
,
Kobayashi
,
T.
,
Mukai
,
T.
,
Watanabe
,
H.
,
Suzuki
,
M.
,
Maruyama
,
K.
, and
Higashi
,
K.
,
2003
, “
The Activity of Non-Basal Slip Systems and Dynamic Recovery at Room Temperature in Fine-Grained AZ31B Magnesium Alloys
,”
Acta Mater.
,
51
(
7
), pp.
2055
2065
.
46.
Koike
,
J.
, and
Ohyama
,
R.
,
2005
, “
Geometrical Criterion for the Activation of Prismatic Slip in AZ61 Mg Alloy Sheets Deformed at Room Temperature
,”
Acta Mater.
,
53
(
7
), pp.
1963
1972
.
47.
Agnew
,
S. R.
, and
Duygulu
,
Ö.
,
2005
, “
Plastic Anisotropy and the Role of Non-Basal Slip in Magnesium Alloy AZ31B
,”
Int. J. Plast.
,
21
(
6
), pp.
1161
1193
.
48.
Keshavarz
,
Z.
, and
Barnett
,
M. R.
,
2006
, “
EBSD Analysis of Deformation Modes in Mg–3Al–1Zn
,”
Scr. Mater.
,
55
(
10
), pp.
915
918
.
49.
Li
,
B.
,
Joshi
,
S.
,
Azevedo
,
K.
,
Ma
,
E.
,
Ramesh
,
K. T.
,
Figueiredo
,
R. B.
, and
Langdon
,
T. G.
,
2009
, “
Dynamic Testing at High Strain Rates of an Ultrafine-Grained Magnesium Alloy Processed by ECAP
,”
Mater. Sci. Eng. A
,
517
(
1–2
), pp.
24
29
.
50.
Barnett
,
M. R.
,
Keshavarz
,
Z.
,
Beer
,
A. G.
, and
Atwell
,
D.
,
2004
, “
Influence of Grain Size on the Compressive Deformation of Wrought Mg–3Al–1Zn
,”
Acta Mater.
,
52
(
17
), pp.
5093
5103
.
51.
Ding
,
H.
, and
Shin
,
Y. C.
,
2012
, “
Dislocation Density-Based Modeling of Subsurface Grain Refinement With Laser-Induced Shock Compression
,”
Comput. Mater. Sci.
,
53
(
1
), pp.
79
88
.
52.
Shen
,
N.
, and
Ding
,
H.
,
2014
, “
Physics-Based Microstructure Simulation for Drilled Hole Surface in Hardened Steel
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
044504
.
53.
Baik
,
S. C.
,
Estrin
,
Y.
,
Kim
,
H. S.
,
Jeong
,
H.-T.
, and
Hellmig
,
R. J.
,
2002
, “
Calculation of Deformation Behavior and Texture Evolution During Equal Channel Angular Pressing of IF Steel Using Dislocation Based Modeling of Strain Hardening
,”
Mater. Sci. Forum
,
408–412
, pp.
697
702
.
54.
Hasenpouth
,
D.
,
2010
, “
Tensile High Strain Rate Behavior of AZ31B Magnesium Alloy
,” M.S. thesis, University of Waterloo, Waterloo, ON, Canada.
55.
Lemiale
,
V.
,
Estrin
,
Y.
,
Kim
,
H. S.
, and
O'Donnell
,
R.
,
2010
, “
Grain Refinement Under High Strain Rate Impact: A Numerical Approach
,”
Comput. Mater. Sci.
,
48
(
1
), pp.
124
132
.
56.
Hibbins
,
S. G.
,
1998
, “
Investigation of Heat Transfer in DC Casting of Magnesium Alloys
,”
International Symposium on Light Metals
, pp.
265
280
.
57.
Ding
,
H.
, and
Shin
,
Y. C.
,
2013
, “
Multi-Physics Modeling and Simulations of Surface Microstructure Alteration in Hard Turning
,”
J. Mater. Process. Technol.
,
213
(
6
), pp.
877
886
.
58.
Calamaz
,
M.
,
Coupard
,
D.
, and
Girot
,
F.
,
2008
, “
A New Material Model for 2D Numerical Simulation of Serrated Chip Formation When Machining Titanium Alloy Ti–6Al–4V
,”
Int. J. Mach. Tools Manuf.
,
48
(
3–4
), pp.
275
288
.
59.
Pu
,
Z.
,
Umbrello
,
D.
,
Dillon
,
O. W.
, and
Jawahir
,
I. S.
,
2014
, “
Finite Element Simulation of Residual Stresses in Cryogenic Machining of AZ31B Mg Alloy
,”
Procedia CIRP
,
13
, pp.
282
287
.
60.
Bergman
,
T. L.
,
Incropera
,
F. P.
,
DeWitt
,
D. P.
, and
Lavine
,
A. S.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
New York
.
61.
Lide
,
D. R.
,
1994
,
Handbook of Chemistry and Physics
,1994 Special Student Edition,
CRC Press
,
Boca Raton, FL
.
You do not currently have access to this content.