Finite element modeling (FEM) of machining-induced residual stresses (RS) takes place over two consecutive steps: a cutting step and a relaxation step. In the latter, the workpiece is left to cool down after deactivating all external loads. The current work focuses on the relaxation step, and how different strain components, material plasticity, and workpiece edge deflections affect the final state of different RS components. First, a two-dimensional arbitrary-Lagrangian–Eulerian (ALE) plane strain thermomechanical explicit model was used to simulate dry orthogonal cutting. After that, the relaxation process was modeled using three approaches: (1) the classical approach, (2) a new approach that is first presented here, and (3) a modified approach that was developed earlier by the current author. In the classical approach, the same exact machined workpiece is relaxed, considering all stress/strain components and material plasticity. On the other hand, the new approach uses a pure elastic one-dimensional thermal relaxation model, in the cutting direction, and assumes that the workpiece edges normal to the cutting direction remain so. The differences between the RS predicted by the new and classical approaches reflected the combined effects of the examined parameters. The role of each parameter was isolated using three different versions of the modified approach. The current findings confirmed that for orthogonal cutting, the stress relaxation process can be considered as a one-dimensional pure elastic thermal relaxation process. Also, the workpiece edges normal to the cutting direction deflect during relaxation, contributing to the final state of RS.

References

1.
Nasr
,
M. N. A.
,
2008
, “
On Modelling of Machining-Induced Residual Stresses
,” Ph.D. thesis, McMaster University, Hamilton, ON, Canada.
2.
Pu
,
Z.
,
Outeiro
,
J. C.
,
Batista
,
A. C.
,
Dillon
,
O. W.
, Jr.
,
Puleo
,
D. A.
, and
Jawahir
,
I. S.
,
2012
, “
Enhanced Surface Integrity of AZ31B Mg Alloy by Cryogenic Machining Towards Improved Functional Performance of Machined Components
,”
Int. J. Mach. Tools Manuf.
,
56
, pp.
17
27
.
3.
Nasr
,
M. N. A.
,
Ng
,
E.-G.
, and
Elbestawi
,
M. A.
,
2008
, “
A Modified Time-Efficient FE Approach for Predicting Machining-Induced Residual Stresses
,”
Finite Elem. Anal. Des.
,
44
(
4
), pp.
149
161
.
4.
Nasr
,
M. N. A.
,
Ng
,
E.-G.
, and
Elbestawi
,
M. A.
,
2007
, “
Effects of Strain Hardening and Initial Yield Strength on Machining-Induced Residual Stresses
,”
ASME J. of Eng. Mater. Technol.
,
129
(
4
), pp.
567
579
.
5.
Jawahir
,
I. S.
,
Brinksmeier
,
E.
,
M’Saoubi
,
R.
,
Aspinwall
,
D. K.
,
Outeiro
,
J. C.
,
Meyer
,
D.
,
Umbrello
,
D.
, and
Jayal
,
A. D.
,
2011
, “
Surface Integrity in Material Removal Processes: Recent Advances
,”
CIRP Ann. Manuf. Technol.
,
60
(
2
), pp.
603
626
.
6.
Nasr
,
M. N. A.
,
Ng
,
E.-G.
, and
Elbestawi
,
M. A.
,
2007
, “
Modelling the Effects of Tool-Edge Radius on Residual Stresses When Orthogonal Cutting AISI 316L
,”
Int. J. Mach. Tools Manuf.
,
47
(
2
), pp.
401
411
.
7.
Chen
,
L.
,
El-Wardany
,
T. I.
,
Nasr
,
M.
, and
Elbestawi
,
M. A.
,
2006
, “
Effects of Edge Preparation and Feed When Hard Turning a Hot Work Die Steel With Polycrystalline Cubic Boron Nitride Tools
,”
CIRP Ann. Manuf. Technol.
,
55
(
1
), pp.
89
92
.
8.
Hua
,
J.
,
Umbrello
,
D.
, and
Shivpuri
,
R.
,
2006
, “
Investigation of Cutting Conditions and Cutting Edge Preparations for Enhanced Compressive Subsurface Residual Stress in the Hard Turning of Bearing Steel
,”
J. Mater. Process Technol.
,
171
(
2
), pp.
180
187
.
9.
Liu
,
C. R.
, and
Guo
,
Y. B.
,
2000
, “
Finite Element Analysis of the Effect of Sequential Cuts and Tool-Chip Friction on Residual Stresses in a Machined Layer
,”
Int. J. Mech. Sci.
,
42
(
6
), pp.
1069
1086
.
10.
Yen
,
Y.-C.
,
Söhner
,
J.
,
Lilly
,
B.
, and
Altan
,
T.
,
2004
, “
Estimation of Tool Wear in Orthogonal Cutting Using Finite Element Analysis
,”
J. Mater. Process. Technol.
,
146
(
1
), pp.
82
91
.
11.
Kishawy
,
H. A.
, and
Elbestawi
,
M. A.
,
2001
, “
Tool Wear and Surface Integrity During High-Speed Turning of Hardened Steel With Polycrystalline Cubic Boron Nitride Tools
,”
Proc. Inst. Mech. Eng., B
,
215
(
6
), pp.
745
753
.
12.
Outeiro
,
J. C.
,
Umbrello
,
D.
, and
M’Saoubi
,
R.
,
2006
, “
Experimental and Numerical Modelling of the Residual Stresses Induced in Orthogonal Cutting of AISI 316L Steel
,”
Int. J. Mach. Tools Manuf.
,
46
(
14
), pp.
1786
1794
.
13.
Madhavan
,
V.
, and
Adibi-Sedeh
,
A. H.
,
2005
, “
Understanding of Finite Element Analysis Results Under the Framework of Oxley’s Machining Model
,”
Machining Sc. Technol.
,
9
(
3
), pp.
345
368
.
14.
Özel
,
T.
,
2006
, “
The Influence of Friction Models on Finite Element Simulations of Machining
,”
Int. J. Mach. Tools Manuf.
,
46
(
5
), pp.
518
530
.
15.
Nasr
,
M. N. A.
,
Ng
,
E.-G.
, and
Elbestawi
,
M. A.
,
2007
, “
Effects of Workpiece Thermal Properties on Machining-Induced Residual Stresses—Thermal Softening and Conductivity
,”
Proc. Inst. Mech. Eng.
, B,
221
(
9
), pp.
1387
1400
.
16.
Nasr
,
M. N. A.
,
2014
, “
Predicting the Effects of Grain Size on Machining-Induced Residual Stresses in Steels
,”
Adv. Mater. Res.
996
, pp.
634
639
.
17.
Umbrello
,
D.
,
Outeiro
,
J. C.
,
M’Saoubi
,
R.
,
Jayal
,
A. D.
, and
Jawahir
,
I. S.
,
2010
, “
A Numerical Model Incorporating the Microstructure Alteration for Predicting Residual Stresses in Hard Machining of AISI 52100 Steel
,”
CIRP Ann. Manuf. Technol.
,
59
(
1
), pp.
113
116
.
18.
Nasr
,
M. N. A.
,
Balbaa
,
M.
, and
Elgamal
,
H.
,
2014
, “
Modelling Machining-Induced Residual Stresses After Laser-Assisted Turning of Steels
,”
Adv. Mater. Res.
,
996
, pp.
622
627
.
19.
Navas
,
V. G.
,
Arriola
,
I.
,
Gonzalo
,
O.
, and
Leunda
,
J.
,
2013
, “
Mechanisms Involved in the Improvement of Inconel 718 Machinability by Laser Assisted Machining (LAM)
,”
Int. J. Mach. Tools Manuf.
,
74
, pp.
19
28
.
20.
Rahman Rashid
,
R. A.
,
Sun
,
S.
,
Wanga
,
G.
, and
Dargusch
,
M. S.
,
2012
, “
An Investigation of Cutting Forces and Cutting Temperatures During Laser-Assisted Machining of the Ti–6Cr–5Mo–5V–4Al Beta Titanium Alloy
,”
Int. J. Mach. Tools Manuf.
,
63
, pp.
58
69
.
21.
Attia
,
H.
,
Tavakoli
,
S.
,
Vargas
,
R.
, and
Thomson
,
V.
,
2010
, “
Laser-Assisted High-Speed Finish Turning of Superalloy Inconel 718
,”
CIRP Ann. Manuf. Technol.
,
59
(
1
), pp.
83
88
.
22.
Umbrello
,
D.
,
Micari
,
F.
, and
Jawahir
,
I. S.
,
2012
, “
The Effects of Cryogenic Cooling on Surface Integrity in Hard Machining: A Comparison With Dry Machining
,”
CIRP Ann. Manuf. Technol.
,
61
(
1
), pp.
103
106
.
23.
Kenda
,
J.
,
Pusavec
,
F.
, and
Kopac
,
J.
,
2011
, “
Analysis of Residual Stresses in Sustainable Cryogenic Machining of Nickel Based Alloy—Inconel 718
,”
ASME J. Manuf. Sci. Eng.
,
133
(4), p.
041009
.
24.
Nasr
,
M. N. A.
, and
Outeiro
,
J. C.
,
2015
, “
Sensitivity Analysis of Cryogenic Cooling on Machining of Magnesium Alloy AZ31B-O
,”
Procedia CIRP
,
31
, pp.
264
269
.
25.
Movahhedy
,
M. R.
,
Altintas
,
Y.
, and
Gadala
,
M. S.
,
2002
, “
Numerical Analysis of Metal Cutting With Chamfered and Blunt Tools
,”
ASME J. Manuf. Sci. Eng.
,
124
(
2
), pp.
178
188
.
26.
Demarco
,
D.
, and
Dvorkin
,
E. N.
,
2005
, “
An Eulerian Finite Element Formulation for Modelling Stationary Finite Strain Elastic Deformation Processes
,”
Int. J. Numer. Methods. Eng.
,
62
(
8
), pp.
1038
1063
.
27.
Germain
,
G.
,
Dal Santo
,
P.
, and
Lebrun
,
J. L.
,
2011
, “
Comprehension of Chip Formation in Laser Assisted Machining
,”
Int. J. Mach. Tools Manuf.
,
51
(
3
), pp.
230
238
.
28.
Gadala
,
M. S.
,
2004
, “
Recent Trends in ALE Formulation and Its Applications in Solid Mechanics
,”
Comput. Methods Appl. Mech. Eng.
,
193
(39–41), pp.
4247
4275
.
29.
Xi
,
Y.
,
Bermingham
,
M.
,
Wang
,
G.
, and
Dargusch
,
M.
,
2014
, “
SPH/FE Modeling of Cutting Force and Chip Formation During Thermally Assisted Machining of Ti6Al4V Alloy
,”
Comput. Mater. Sci.
,
84
, pp.
188
197
.
30.
Zahedi
,
S. A.
,
Roy
,
A.
, and
Silberschmidt
,
V. V.
,
2013
, “
Modeling of Micro-Machining Single-Crystal F.C.C. Metals
,”
Procedia CIRP
,
8
, pp.
346
350
.
31.
Balbaa
,
M.
, and
Nasr
,
M. N. A.
,
2015
, “
Prediction of Residual Stresses After Laser-Assisted Machining of Inconel 718 Using SPH
,”
Procedia CIRP
,
31
, pp.
19
23
.
32.
Shih
,
A. J.
,
1996
, “
Finite Element Analysis of Orthogonal Metal Cutting Mechanics
,”
Int. J. Mach. Tools Manuf.
,
36
(
2
), pp.
255
273
.
33.
Rotella
,
G.
, and
Umbrello
,
D.
,
2014
, “
Numerical Simulation of Surface Modification in Dry and Cryogenic Dry and Cryogenic Machining of AA7075 Alloy
,”
Procedia CIRP
,
13
, pp.
327
332
.
34.
Ng
,
E.-G.
,
Aspinwall
,
D. K.
,
Brazil
,
D.
, and
Monaghan
,
J.
,
1999
, “
Modelling of Temperature and Forces When Orthogonally Machining Hardened Steel
,”
Int. J. Mach. Tools Manuf.
,
39
(
6
), pp.
885
903
.
35.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1983
, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
7th International Symposium on Ballistics
, Hague, The Netherlands, Apr. 19–21, pp. 541–547.
36.
Chandrasekaran
,
H.
,
M’Saoubi
,
R.
, and
Chazal
,
H.
,
2005
, “
Modelling of Material Flow Stress in Chip Formation Process From Orthogonal Milling and Split Hopkinson Bar Tests
,”
Machining Sc. Technol.
,
9
(
1
), pp.
131
145
.
37.
Huang
,
Y.
, and
Liang
,
S.
,
2003
, “
Force Modelling in Shallow Cuts With Large Negative Rake Angle and Large Nose Radius Tools—Application to Hard Turning
,”
Int. J. Adv. Manuf. Technol.
,
22
(9), pp.
626
632
.
38.
M’Saoubi
,
R.
,
Outeiro
,
J. C.
,
Changeux
,
B.
,
Lebrun
,
J. L.
, and
Dias
,
A. M.
,
1999
, “
Residual Stress Analysis in Orthogonal Machining of Standard and Resulfurized AISI 316L Steels
,”
J. Mater. Process. Technol.
,
96
(1–3), pp.
225
233
.
39.
Guo
,
Y. B.
, and
Liu
,
C. R.
,
2002
, “
3D FEA Modelling of Hard Turning
,”
ASME J. Manuf. Sci. Eng.
,
124
(
2
), pp.
189
199
.
You do not currently have access to this content.