Cutting tool rotation errors have significant influence on the machined surface quality, especially in micromilling. Precision metrology instruments are usually needed to measure the rotation error accurately. However, it is difficult to directly measure the axial error of micromilling tools due to the small diameters and ultra-high rotational speed. To predict the axial error of high speed milling tools in the actual machining conditions and avoid the use of expensive metrology instruments, a novel method is proposed in this paper to quantify the cutting tool error in the axial direction based on the tool marks generated on the machined surface. A numerical model is established to simulate the surface topography generation, and the relationship between tool marks and the cutting tool axial error is then investigated. The tool axial errors at different rotational speeds can be detected by the proposed method. The accuracy and the reliability of the proposed method are verified by machining experiments.

References

1.
Chen
,
D.
,
Fan
,
J.
, and
Zhang
,
F.
,
2012
, “
An Identification Method for Spindle Rotation Error of a Diamond Turning Machine Based on the Wavelet Transform
,”
Int. J. Adv. Manuf. Technol.
,
63
(
5–8
), pp.
457
464
.
2.
Zhang
,
G. X.
, and
Wang
,
R. K.
,
1993
, “
Four-Point Method of Roundness and Spindle Error Measurements
,”
CIRP Ann.-Manuf. Technol.
,
42
(
1
), pp.
593
596
.
3.
Shu
,
Q.
,
Zhu
,
M.
,
Liu
,
X.
, and
Cheng
,
H.
,
2017
, “
Radial Error Motion Measurement of Ultraprecision Axes of Rotation With Nanometer Level Precision
,”
ASME J. Manuf. Sci. Eng.
,
139
(
7
), p.
071017
.
4.
Grejda
,
R.
,
Marsh
,
E.
, and
Vallance
,
R.
,
2005
, “
Techniques for Calibrating Spindles With Nanometer Error Motion
,”
Precis. Eng.
,
29
(
1
), pp.
113
123
.
5.
Chen
,
N.
,
Chen
,
M. J.
,
Wu
,
C. Y.
,
Pei
,
X. D.
,
Qian
,
J.
, and
Reynaerts
,
D.
,
2017
, “
Research in Minimum Undeformed Chip Thickness and Size Effect in Micro End-Milling of Potassium Dihydrogen Phosphate Crystal
,”
Int. J. Mech. Sci.
,
134
, pp.
387
398
.
6.
Zhou
,
Y.
,
Chen
,
Z. C.
, and
Tang
,
J.
,
2017
, “
A New Method of Designing the Tooth Surfaces of Spiral Bevel Gears With Ruled Surface for Their Accurate Five-Axis Flank Milling
,”
ASME J. Manuf. Sci. Eng.
,
139
(
6
), p.
061004
.
7.
Schmitz
,
T. L.
,
Couey
,
J.
,
Eric
,
M.
,
Mauntler
,
N.
, and
Hughes
,
D.
,
2007
, “
Runout Effects in Milling: Surface Finish, Surface Location Error, and Stability
,”
Int. J. Mach. Tools Manuf.
,
47
(
5
), pp.
841
851
.
8.
Chen
,
W. Q.
,
Huo
,
D. H.
,
Teng
,
X. Y.
, and
Sun
,
Y. Z.
,
2017
, “
Surface Generation Modelling for Micro End Milling Considering the Minimum Chip Thickness and Tool Runout
,”
Procedia CIRP
,
58
, pp.
364
369
.
9.
Kanlı
,
M.
,
2014
,
Modeling of Cutting Forces in Micro Milling Including Run-out [D]
,
Bilkent University
, Bilkent, Ankara, Turkey.
10.
Zhang
,
X.
,
Ehmann
,
K. F.
,
Yu
,
T.
, and
Wang
,
W.
,
2016
, “
Cutting Forces in Micro-End-Milling Processes
,”
Int. J. Mach. Tools Manuf.
,
107
, pp.
21
40
.
11.
Zhang
,
X.
,
Zhang
,
J.
,
Zhang
,
W.
,
Li
,
J.
, and
Zhao
,
W.
,
2018
, “
A Non-Contact Calibration Method for Cutter Runout With Spindle Speed Dependent Effect and Analysis of Its Influence on Milling Process
,”
Precis. Eng.
,
51
, pp.
280
290
.
12.
Lee
,
C.
,
Zhao
,
R.
, and
Jeon
,
S.
,
2017
, “
A Simple Optical System for Miniature Spindle Runout Monitoring
,”
Measurements
,
102
, pp.
42
46
.
13.
Nakkiew
,
W.
,
Lin
,
C. W.
, and
Tu
,
J. F.
,
2006
, “
A New Method to Quantify Radial Error of a Motorized End-Milling Cutter System at Very High Speed Rotations
,”
Int. J. Mach. Tools Manuf.
,
46
(
7-8
), pp.
877
889
.
14.
Attanasio
,
A.
, and
Ceretti
,
E.
,
2018
, “
Experimental Evaluation of Tool Run-out in Micro Milling
,”
AIP Conf. Proc.
,
1960
(
1
), p.
070002
.
15.
Ji
,
W.
,
Shi
,
J.
,
Liu
,
X.
,
Wang
,
L.
, and
Liang
,
S. Y.
,
2017
, “
A Novel Approach of Tool Wear Evaluation
,”
ASME J. Manuf. Sci. Eng.
,
139
(
9
), p.
091015
.
16.
Krüger
,
M.
, and
Denkena
,
B.
,
2013
, “
Model-Based Identification of Tool Runout in End Milling and Estimation of Surface Roughness From Measured Cutting Forces
,”
Int. J. Adv. Manuf. Technol.
,
65
(
5–8
), pp.
1067
1080
.
17.
Seethaler
,
R. J.
, and
Yellowley
,
I.
,
1999
, “
The Identification of Radial Runout in Milling Operations
,”
ASME J. Manuf. Sci. Eng.
,
121
(
3
), pp.
524
531
.
18.
Jing
,
X.
,
Tian
,
Y.
,
Yuan
,
Y.
, and
Wang
,
F.
,
2017
, “
A Runout Measuring Method Using Modeling and Simulation Cutting Force in Micro End-Milling
,”
Int. J. Adv. Manuf. Technol.
,
91
(
9–12
), pp.
4191
4201
.
19.
Bissacco
,
G.
,
Hans
,
N. H.
, and
Slunsky
,
J.
,
2008
, “
Modelling the Cutting Edge Radius Size Effect for Force Prediction in Micro Milling
,”
CIRP Ann.-Manuf. Technol.
,
57
(
1
), pp.
113
116
.
20.
Li
,
H.
, and
Wu
,
B.
,
2016
, “
Development of a Hybrid Cutting Force Model for Micromilling of Brass
,”
Int. J. Mech. Sci.
,
115–116
, pp.
586
595
.
21.
Vogler
,
M. P.
,
Shiv
,
G. K.
, and
Richard
,
E. D.
,
2004
, “
On the Modeling and Analysis of Machining Performance in Micro-Endmilling—Part II: Cutting Force Prediction
,”
ASME J. Manuf. Sci. Eng.
,
126
(
4
), pp.
695
705
.
22.
Huang
,
N. E.
,
Shen
,
Z.
,
Long
,
S. L.
,
Wu
,
M. C.
,
Shih
,
H. H.
,
Zheng
,
Q.
,
Yen
,
N.-C.
,
Tung
,
C. C.
, and
Liu
,
H. H.
,
1988
, “
The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis
,”
Proc. R. Soc. London A: Math., Phys. Eng. Sci.
,
454
, pp.
903
995
.
23.
Zhang
,
B.
,
Zhang
,
C.
, and
Wu
,
J.
,
2014
, “
A Medical Image Fusion Method Based on Energy Classification of BEMD Components
,”
Optik - Int. J. Light Electron. Opt.
,
125
(
1
), pp.
146
153
.
24.
Acharya
,
U. R.
,
Mookiah
,
M. R. K.
, and
Koh
,
J. E. W.
,
2016
, “
Automated Screening System for Retinal Health Using Bi-Dimensional Empirical Mode Decomposition and Integrated Index
,”
Comput. Biol. Med.
,
75
, pp.
54
62
.
You do not currently have access to this content.