Emerging re-industrialization demands the fusion of the physical and the digital world for the development of sustainable manufacturing processes. Sustainability in manufacturing aims at improving the resource productivity by identifying the environmental challenges as opportunities. In the present era of the fourth industrial revolution or digital manufacturing, manufacturers strive to gain value through every bit of data collection throughout the product lifecycle. Integration of the collected information as knowledge to improve the productivity and efficiency of the system is required to realize its benefits. In the present work, a digital twin for grinding wheel as a product integrated and web-based knowledge sharing platform is developed. It integrates the data collected in each phase of the grinding wheel from the manufacturing to the conditioning phase. The developed digital twin is implemented on the surface grinding machine. The methods for the abstraction of the production information from the manufacturer and the process information while grinding are presented. The development of a predictive model for redress life identification and computation of dressing interim period using spindle motor current data is developed and integrated. The quantifiable benefits from the digital twin for productivity and efficiency are discussed through a case study. The case study scenario evident that the implementation of the digital twin for grinding wheels increases energy and resource efficiency by 14.4%. This clearly depicts the usefulness of the digital twin for energy and resource efficiency toward the sustainable grinding process.

References

1.
Malkin
,
S.
,
1989
,
Grinding Technology: Theory and Application of Machining With Abrasives
,
Wiley
,
New York
.
2.
Malkin
,
S.
, and
Cook
,
N. H.
,
1971
, “
The Wear of Grinding Wheels—Part 1: Attritious Wear
,”
ASME J. Eng. Ind.
, pp.
1121
1128
.
3.
Linke
,
B. S.
,
2014
, “
Sustainability Concerns in the Life Cycle of Bonded Grinding Tools
,”
CIRP J. Manuf. Sci. Technol.
,
7
(
3
), pp.
258
263
.
4.
Field
,
M.
,
Kegg
,
R.
, and
Bueschar
,
S.
,
1980
, “
Computerized Cost Analysis of Grinding Operations
,”
Ann. CIRP
,
29
(
1
), pp.
233
237
.
5.
Pavic
,
A.
,
Josipovic
,
B.
, and
Brozovic
,
M.
,
2007
, “
Machining Costs in Grinding
,”
11th International Scientific Conference on Production Engineering
, Biograd, Croatia, June 13–17, pp.
13
17
.
6.
QYResearch
,
2018
, “
Global Grinding Wheels Sale Market Report
,” Global Information, Kawasaki, Japan, accessed Mar. 13, 2018, https://www.giiresearch.com/report/qyr458117-global-grinding-wheels-sales-market-report.html
7.
Lachance
,
S.
,
Bauer
,
R.
, and
Warkentin
,
A.
,
2004
, “
Application of Region Growing Method to Evaluate the Surface Condition of Grinding Wheels
,”
Int. J. Mach. Tool Manuf.
,
44
(
7–8
), pp.
823
829
.
8.
Arunachalam
,
N.
, and
Ramamoorthy
,
B.
,
2007
, “
Texture Analysis for Grinding Wheel Wear Assessment Using Machine Vision|
,”
Proc. Inst. Mech. Eng., Part B
,
221
(
3
), pp.
419
430
.
9.
Arunachalam
,
N.
, and
Vijayaraghavan
,
L.
,
2014
, “
Assessment of Grinding Wheel Conditioning Process Using Machine Vision
,” IEEE Conference on Prognostics and Health Management (
PHM
), Cheney, WA, June 22–25, pp. 1–5.
10.
Adibi
,
H.
,
Rezael
,
S. M.
, and
Sarha
,
A. D.
,
2014
, “
Grinding Wheel Loading Evaluation Using Digital Image Processing
,”
ASME J. Manuf. Sci. Eng.
, 136(1), p.
011012
.
11.
Arunachalam
,
N.
, and
Vijayaraghavan
,
L.
,
2015
, “
Evaluation of the Working Surface of the Grinding Wheel Using Speckle Image Analysis
,”
ASME
Paper No. MSEC2015-9416.
12.
Lezanski
,
P.
,
2001
, “
Intelligent System for Grinding Wheel Condition Monitoring
,”
J. Mater. Process. Technol.
,
109
(
3
), pp.
258
263
.
13.
Karpuschewski
,
B.
,
Wehmeier
,
M.
, and
Inasaki
,
I.
,
2000
, “
Grinding Monitoring System Based on Power and Acoustic Emission Sensors
,”
Ann. CIRP
,
49
(
1
), pp.
235
240
.
14.
Kwak
,
J. S.
, and
Ha
,
M. K.
,
2004
, “
Detection of Dressing Time Using the Grinding Force Signal Based on the Discrete Wavelet Decomposition
,”
Int. J. Adv. Manuf. Technol.
,
23
(
1–2
), pp.
87
92
.
15.
Chen
,
X.
, and
Limchimchol
,
T.
,
2006
, “
Monitoring Grinding Wheel Redress Life Using Support Vector Machines
,”
Int. J. Autom. Comput.
,
1
, pp.
56
62
.
16.
Alexandre
,
F. P.
,
Lopes
,
W. N.
,
Dotto
,
L.
,
Ferreira
,
F. I.
,
Agular
,
P. R.
,
Binachi
,
E. C.
, and
Lopes
,
J. C.
,
2018
, “
Tool Condition Monitoring of Aluminium Oxide Grinding Wheel Using AE and Fuzzy Model
,”
Int. J. Adv. Manuf. Technol.
,
96
(
1–4
), pp.
67
79
.
17.
Cai
,
R.
,
Rowe
,
W. B.
,
Mourzzi
,
J. L.
, and
Morgan
,
M. N.
,
2007
, “
Intelligent Grinding Assistant (IGA(©))—System Development—Part I: Intelligent Grinding Database
,”
Int. J. Adv. Manuf. Technol.
,
35
(
1–2
), pp.
75
85
.
18.
Ding
,
H.
, and
Cheng
,
K.
,
2014
, “
Development of an Innovative ERWC Approach to Sustainable Manufacturing With Application to Design of an Energy-Resource Efficient CNC Centerless Grinding
,”
KEC Transaction on Sustainable Design and Manufacturing I
, pp.
653
667
http://nimbusvault.net/publications/koala/inimpact/papers/sdm14-076.pdf.
19.
Linke
,
B.
, and
Overcash
,
M.
,
2012
, “
Life Cycle Analysis of Grinding
,”
19th CIRP Conference on Life Cycle Engineering
, Berkeley, CA, May 23–25, pp.
293
298
.
20.
Hong
,
H.
,
Yin
,
Y.
, and
Chen
,
X.
,
2016
, “
Ontological Modeling of Knowledge Management for the Human-Machine Integrated Design of Ultra-Precision Grinding Machine
,”
Enterprise Inf. Syst.
,
10
(
9
), pp.
970
981
.
21.
Jiang
,
P.
,
Li
,
G.
,
Liu
,
P.
,
Jiang
,
L.
, and
Li
,
X.
,
2017
, “
Energy Consumption Model and Energy Efficiency Evaluation for CNC Continuous Generating Grinding Machine Tools
,”
Int. J. Sustainable Eng.
,
10
(
4–5
), pp.
226
232
.
22.
Negri
,
E.
,
Fumagalli
,
L.
, and
Macchi
,
M.
,
2017
, “
A Review of the Roles of Digital Twin in CPS-Based Production Systems
,”
Procedia Manuf.
,
11
, pp.
939
948
.
23.
Cai
,
Y.
,
Starly
,
B.
,
Cohen
,
P.
, and
Lee
,
Y. S.
,
2017
, “
Sensor Data and Information Fusion to Construct Digital-Twin Virtual Machine Tools for Cyber-Physical Manufacturing
,”
Procedia Manuf.
,
10
, pp.
1031
1042
.
24.
Botkina
,
D.
,
Hedlind
,
M.
,
Olsson
,
B.
,
Henser
,
J.
, and
Lundholm
,
T.
,
2018
, “
Digital Twin of a Cutting Tool
,”
Procedia CIRP
,
72
, pp.
215
218
.
25.
Qi
,
Q.
,
Tao
,
F.
,
Zuo
,
Y.
, and
Zhao
,
D.
,
2018
, “
Digital Twin Service Towards Smart Manufacturing
,”
Procedia CIRP
,
72
, pp.
237
242
.
26.
Zhang
,
W.
,
Huang
,
X.
,
Chen
,
N.
,
Wang
,
W.
, and
Zhong
,
H.
,
2012
, “
PaaS-Oriented Performance Modeling for Cloud Computing
,”
IEEE
36th International Conference on Computer Software and Applications
, Izmir, Turkey, July 16–20, pp.
395
404
.
27.
Clobe
,
J.
, and
Hines
,
J. W.
,
2009
, “
Identifying Optimal Prognostic Parameters From Data: A Genetic Algorithms Approach
,”
Annual Conference of the Prognostics and Health Management Society
, San Diego, CA, Sept. 27–30, pp.
1
11
http://ftp.phmsociety.org/sites/phmsociety.org/files/phm_submission/2009/phmc_09_69.pdf.
28.
Williams
,
R. E.
, and
Rajurkar
,
K. P.
,
1992
, “
Stochastic Modeling and Analysis of Abrasive Flow Machining
,”
J. Eng. Ind.
,
114
, pp.
74
81
.
29.
Kalpana
,
K.
,
Arunachalam
,
N.
,
Chawala
,
A.
, and
Natarajan
,
S.
,
2018
, “
Multi-Sensor Data Analytics for Grinding Wheel Redress Life Estimation—An Approach Towards Industry 4.0
,”
46th Procedia Manufacturing
, TX, June 18–22 , pp.
1230
1241
.
30.
Pi
,
V. N.
,
Lu
,
A. T.
,
Hung
,
L. X.
, and
Long
,
B. T.
,
2016
, “
Cost Optimization of Surface Grinding Process
,”
J. Environ. Sci. Eng.
,
5
, pp.
606
611
.
You do not currently have access to this content.