Abstract

Society's consumption of natural resources and the impact of industrial activities on the environment have gained increasing attention over the last several decades. This paper provides a historical perspective on the origins of the environmental movement and its connection to industrial systems. Then, recent research related to product design, process improvement and change, green manufacturing planning, and the circular economy are described. With respect to product design, topics such as material selection and component light-weighting are considered. For process-related research, efforts such as operation changes and equipment design for reduced energy consumption are discussed. For manufacturing planning, new developments in process planning and production scheduling are highlighted that consider environmental performance. The concept of circular economy is examined critically, with particular emphasis placed on closing materials loops via recycling and remanufacturing. The paper concludes with a discussion of challenges and opportunities to achieve the goal of industrial sustainability.

References

1.
Central Intelligence Agency
,
2017
,
The World Factbook: Economy—Overview
,
Central Intelligence Agency
,
Washington, DC
.
2.
International Energy Agency. Global Energy & CO2 Status Report 2019, The Latest Trends in Energy and Emissions in 2018
, (https://www.iea.org/reports/global-energy-co2-status-report-2019/emissions) & Energy Technology Perspectives 2008: Scenarios & Strategies to 2050 (OECD/IEA, Paris).
3.
Ehrlich
,
P. R.
, and
Holdren
,
J. P.
,
1971
, “
Impact of Population Growth
,”
Science
,
171
(
3977
), pp.
1212
1217
. 10.1126/science.171.3977.1212
4.
Our World in Data: Economic Growth
, https://ourworldindata.org/economic-growth, Accessed September 1, 2019.
5.
Carson
,
R.
,
2002
,
Silent Spring
,
Houghton Mifflin Harcourt
.
6.
Environmental Protection Agency
.
The Origins of EPA
, https://www.epa.gov/history/origins-epa, Accessed August 2, 2019.
7.
Copeland
,
C.
,
1999
,
Clean Water Act: A Summary of the Law
,
Congressional Research Service, Library of Congress
,
Washington, DC
.
8.
Bryner
,
G. C.
,
1995
,
Blue Skies, Green Politics: The Clean Air Act of 1990
.
9.
Mihelcic
,
J. R.
,
Crittenden
,
J. C.
,
Small
,
M. J.
,
Shonnard
,
D. R.
,
Hokanson
,
D. R.
,
Zhang
,
Q.
,
Chen
,
H.
,
Sorby
,
S. A.
,
James
,
V. U.
,
Sutherland
,
J. W.
, and
Schnoor
,
J. L.
,
2003
, “
Sustainability Science and Engineering: The Emergence of a New Metadiscipline
,”
Environ. Sci. Technol.
,
37
(
23
), pp.
5314
5324
. 10.1021/es034605h
10.
Haapala
,
K. R.
,
Zhao
,
F.
,
Camelio
,
J.
,
Sutherland
,
J. W.
,
Skerlos
,
S. J.
,
Dornfeld
,
D. A.
,
Jawahir
,
I. S.
,
Clarens
,
A. F.
, and
Rickli
,
J. L.
,
2013
, “
A Review of Engineering Research in Sustainable Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
135
(
4
), p.
041013
. 10.1115/1.4024040
11.
Keeble
,
B. R.
,
1988
, “
The Brundtland Report:‘Our Common Future’
,”
Medicine and War
,
4
(
1
), pp.
17
25
. 10.1080/07488008808408783
12.
Frosch
,
R. A.
, and
Gallopoulos
,
N. E.
,
1989
,
Strategies for Manufacturing, Scientific American
,
266
.
13.
Graedel
,
T. E.
, and
Allenby
,
B. R.
,
2010
,
Industrial Ecology and Sustainable Engineering: International Edition
,
Pearson Education Inc., Upper Saddle River, Prentice Hall
, p.
425
.
14.
Baccini
,
P.
, and
Brunner
,
P. H.
,
1991
,
Metabolism of the Anthroposphere
,
Springer
,
New York
.
15.
Socolow
,
R.
, and
Thomas
,
V.
,
1997
, “
The Industrial Ecology of Lead and Electric Vehicles
,”
J. Ind. Ecol.
,
1
(
1
), pp.
13
36
. 10.1162/jiec.1997.1.1.13
16.
Scherkenbach
,
W. W.
,
1987
,
The Deming Route to Quality and Productivity: Road map and Roadblocks
,
Mercury Press/Fairchild Publications
,
New York
.
17.
Fuller
,
R. B.
,
1963
,
Utopia or Oblivion: the Prospects for Humanity
,
Estate of R. Buckminster Fuller
.
18.
Fuller
,
R. B.
,
2008
,
Operating Manual for Spaceship Earth
,
Estate of R. Buckminster Fuller
.
19.
Van Weenen
,
J. C.
,
1995
, “
Towards Sustainable Product Development
,”
J. Cleaner Prod.
,
3
(
1–2
), pp.
95
100
. 10.1016/0959-6526(95)00062-J
20.
Luttropp
,
C.
, and
Lagerstedt
,
J.
,
2006
, “
EcoDesign and The Ten Golden Rules: Generic Advice for Merging Environmental Aspects Into Product Development
,”
J. Cleaner Prod.
,
14
(
15–16
), pp.
1396
1408
. 10.1016/j.jclepro.2005.11.022
21.
Ramani
,
K.
,
Ramanujan
,
D.
,
Bernstein
,
W. Z.
,
Zhao
,
F.
,
Sutherland
,
J.
,
Handwerker
,
C.
,
Choi
,
J. K.
,
Kim
,
H.
, and
Thurston
,
D.
,
2010
, “
Integrated Sustainable Life Cycle Design: A Review
,”
ASME J. Mech. Des.
,
132
(
9
), p.
091004
. 10.1115/1.4002308
22.
Bovea
,
M. D.
, and
Gallardo
,
A.
,
2006
, “
The Influence of Impact Assessment Methods on Materials Selection for Eco-Design
,”
Mater. Des.
,
27
(
3
), pp.
209
215
. 10.1016/j.matdes.2004.10.015
23.
Hocking
,
M. B.
,
1991, February
,
Paper Versus Polystyrene: a Complex Choice
,
Seminar Organising Committee
.
24.
Standardization
,
I.
,
1997
,
Environmental Management: Life Cycle Assessment
,
Principles and Framework
.
25.
Devanathan
,
S.
,
Ramanujan
,
D.
,
Bernstein
,
W. Z.
,
Zhao
,
F.
, and
Ramani
,
K.
,
2010
, “
Integration of Sustainability Into Early Design Through the Function Impact Matrix
,”
ASME J. Mech. Des.
,
132
(
8
), p.
081004
. 10.1115/1.4001890
26.
Sousa
,
I.
,
Wallace
,
D.
, and
Eisenhard
,
J. L.
,
2000
, “
Approximate Life-Cycle Assessment of Product Concepts Using Learning Systems
,”
J. Ind. Ecol.
,
4
(
4
), pp.
61
81
. 10.1162/10881980052541954
27.
Chen
,
J. L.
, and
Liau
,
C. W.
,
2001, December
, “
A Simple Life Cycle Assessment Method for Green Product Conceptual Design
,”
Proceedings of Second International Symposium on Environmentally Conscious Design and Inverse Manufacturing
,
IEEE
, pp.
775
780
.
28.
Hofer
,
J.
,
Wilhelm
,
E.
, and
Schenler
,
W.
,
2014
, “
Comparing the Mass, Energy, and Cost Effects of Lightweighting in Conventional and Electric Passenger Vehicles
,”
J. Sustainable Dev. Energy, Water Environment Systems
,
2
(
3
), pp.
284
295
. 10.13044/j.sdewes.2014.02.0023
29.
Herrmann
,
C.
,
Dewulf
,
W.
,
Hauschild
,
M.
,
Kaluza
,
A.
,
Kara
,
S.
, and
Skerlos
,
S.
,
2018
, “
Life Cycle Engineering of Lightweight Structures
,”
CIRP Ann.
,
67
(
2
), pp.
651
672
. 10.1016/j.cirp.2018.05.008
30.
Mayyas
,
A. T.
,
Qattawi
,
A.
,
Mayyas
,
A. R.
, and
Omar
,
M. A.
,
2012
, “
Life Cycle Assessment-Based Selection for a Sustainable Lightweight Body-in-White Design
,”
Energy
,
39
(
1
), pp.
412
425
. 10.1016/j.energy.2011.12.033
31.
Kim
,
H. C.
, and
Wallington
,
T. J.
,
2016
, “
Life Cycle Assessment of Vehicle Lightweighting: a Physics-Based Model to Estimate Use-Phase Fuel Consumption of Electrified Vehicles
,”
Environ. Sci. Technol.
,
50
(
20
), pp.
11226
11233
. 10.1021/acs.est.6b02059
32.
Verbrugge
,
M.
,
Lee
,
T.
,
Krajewski
,
P. E.
,
Sachdev
,
A. K.
,
Bjelkengren
,
C.
,
Roth
,
R.
, and
Kirchain
,
R.
,
2009
, “Mass Decompounding and Vehicle Lightweighting,”
Materials Science Forum
, Vol.
618
,
Trans Tech Publications
, pp.
411
418
.
33.
Taub
,
A. I.
, and
Luo
,
A. A.
,
2015
, “
Advanced Lightweight Materials and Manufacturing Processes for Automotive Applications
,”
Mrs Bulletin
,
40
(
12
), pp.
1045
1054
. 10.1557/mrs.2015.268
34.
Brandt
,
J.
,
2004
,
The Research Requirements of the Transport Sectors to Facilitate an Increased Usage of Composite Materials, Part I: The Composite Material Research Requirements of the Aerospace Industry, Composition, European Commission
.
Munich
:
EADS Deutschland GmbH, Corporate Research Centre
.
35.
Lefeuvre
,
A.
,
Garnier
,
S.
,
Jacquemin
,
L.
,
Pillain
,
B.
, and
Sonnemann
,
G.
,
2017
, “
Anticipating In-use Stocks of Carbon Fiber Reinforced Polymers and Related Waste Flows Generated by the Commercial Aeronautical Sector Until 2050
,”
Resour. Conserv. Recycl.
,
125
, pp.
264
272
. 10.1016/j.resconrec.2017.06.023
36.
Dong
,
P. A. V.
,
Azzaro-Pantel
,
C.
,
Boix
,
M.
,
Jacquemin
,
L.
, and
Cadène
,
A. L.
,
2017
, “
A Bicriteria Optimisation Approach for Waste Management of Carbon Fibre Reinforced Polymers Used in Aerospace Applications: Application to the Case Study of France
,”
Waste Biomass Valorization
,
8
(
6
), pp.
2187
2208
. 10.1007/s12649-016-9669-z
37.
Dillingham
,
G. L.
,
2011
,
Aviation Safety-Status of FAA's Actions to Oversee the Safety of Composite Airplanes
,
US Goverment Accountability Office
.
38.
Möhring
,
H. C.
,
Brecher
,
C.
,
Abele
,
E.
,
Fleischer
,
J.
, and
Bleicher
,
F.
,
2015
, “
Materials in Machine Tool Structures
,”
CIRP Ann.
,
64
(
2
), pp.
725
748
. 10.1016/j.cirp.2015.05.005
39.
Kroll
,
L.
,
Blau
,
P.
,
Wabner
,
M.
,
Frieß
,
U.
,
Eulitz
,
J.
, and
Klärner
,
M.
,
2011
, “
Lightweight Components for Energy-Efficient Machine Tools
,”
CIRP J. Manuf. Sci. Technol.
,
4
(
2
), pp.
148
160
. 10.1016/j.cirpj.2011.04.002
40.
Cherubini
,
F.
,
Raugei
,
M.
, and
Ulgiati
,
S.
,
2008
, “
LCA of Magnesium Production: Technological Overview and Worldwide Estimation of Environmental Burdens
,”
Resour. Conserv. Recycl.
,
52
(
8–9
), pp.
1093
1100
. 10.1016/j.resconrec.2008.05.001
41.
Ehrenberger
,
S.
, and
Friedrich
,
H. E.
,
2013
, “
Life-Cycle Assessment of the Recycling of Magnesium Vehicle Components
,”
JOM
,
65
(
10
), pp.
1303
1309
. 10.1007/s11837-013-0703-3
42.
Dalmijn
,
W. L.
, and
De Jong
,
T. P. R.
,
2007
, “
The Development of Vehicle Recycling in Europe: Sorting, Shredding, and Separation
,”
JOM
,
59
(
11
), pp.
52
56
. 10.1007/s11837-007-0141-1
43.
Oliveux
,
G.
,
Dandy
,
L. O.
, and
Leeke
,
G. A.
,
2015
, “
Current Status of Recycling of Fibre Reinforced Polymers: Review of Technologies, Reuse and Resulting Properties
,”
Prog. Mater. Sci.
,
72
, pp.
61
99
. 10.1016/j.pmatsci.2015.01.004
44.
Mativenga
,
P. T.
,
Shuaib
,
N. A.
,
Howarth
,
J.
,
Pestalozzi
,
F.
, and
Woidasky
,
J.
,
2016
, “
High Voltage Fragmentation and Mechanical Recycling of Glass Fibre Thermoset Composite
,”
CIRP Ann.
,
65
(
1
), pp.
45
48
. 10.1016/j.cirp.2016.04.107
45.
Pimenta
,
S.
, and
Pinho
,
S. T.
,
2011
, “
Recycling Carbon Fibre Reinforced Polymers for Structural Applications: Technology Review and Market Outlook
,”
Waste Manage.
,
31
(
2
), pp.
378
392
. 10.1016/j.wasman.2010.09.019
46.
Allwood
,
J. M.
,
Ashby
,
M. F.
,
Gutowski
,
T. G.
, and
Worrell
,
E.
,
2011
, “
Material Efficiency: A White Paper
,”
Resour. Conserv. Recycl.
,
55
(
3
), pp.
362
381
. 10.1016/j.resconrec.2010.11.002
47.
Gutowski
,
T. G.
,
Sahni
,
S.
,
Allwood
,
J. M.
,
Ashby
,
M. F.
, and
Worrell
,
E.
,
2013
, “
The Energy Required to Produce Materials: Constraints on Energy-Intensity Improvements, Parameters of Demand
,”
Philos. Trans. R. Soc. A
,
371
(
1986
), p.
20120003
. 10.1098/rsta.2012.0003
48.
Kim
,
H. J.
,
McMillan
,
C.
,
Keoleian
,
G. A.
, and
Skerlos
,
S. J.
,
2010
, “
Greenhouse Gas Emissions Payback for Lightweighted Vehicles Using Aluminum and High-Strength Steel
,”
J. Ind. Ecol.
,
14
(
6
), pp.
929
946
. 10.1111/j.1530-9290.2010.00283.x
49.
Whitefoot
,
K. S.
,
Grimes-Casey
,
H. G.
,
Girata
,
C. E.
,
Morrow
,
W. R.
,
Winebrake
,
J. J.
,
Keoleian
,
G. A.
, and
Skerlos
,
S. J.
,
2011
, “
Consequential Life Cycle Assessment With Market-Driven Design: Development and Demonstration
,”
J. Ind. Ecol.
,
15
(
5
), pp.
726
742
. 10.1111/j.1530-9290.2011.00367.x
50.
McMillan
,
C. A.
, and
Keoleian
,
G. A.
,
2009
, “
Not all Primary Aluminum is Created Equal: Life Cycle Greenhouse Gas Emissions From 1990 to 2005
,”
Environ. Sci. Technol.
,
43
(
5
), pp.
1571
1577
. 10.1021/es800815w
51.
Allwood
,
J. M.
,
Cullen
,
J. M.
,
Carruth
,
M. A.
,
Cooper
,
D. R.
,
McBrien
,
M.
,
Milford
,
R. L.
,
Moynihan
,
M. C.
, and
Patel
,
A. C.
,
2012
,
Sustainable Materials: With Both Eyes Open
,
UIT Cambridge
,
Cambridge, UK
, p.
384
.
52.
Shade
,
S. A.
, and
Sutherland
,
J. W.
,
2018
, “
Energy Efficient or Energy Effective Manufacturing?
,”
Energy Effic. Manuf. Theory Appl.
, pp.
421
444
. 10.1002/9781119519904.ch16
53.
Dornfeld
,
D. A.
,
2014
, “
Moving Towards Green and Sustainable Manufacturing
,”
Int. J. Precis. Eng. Manuf.-Green Technol.
,
1
(
1
), pp.
63
66
. 10.1007/s40684-014-0010-7
54.
Diaz-Elsayed
,
N.
,
Dornfeld
,
D.
, and
Horvath
,
A.
,
2015
, “
A Comparative Analysis of the Environmental Impacts of Machine Tool Manufacturing Facilities
,”
J. Cleaner Prod.
,
95
, pp.
223
231
. 10.1016/j.jclepro.2015.02.047
55.
Kara
,
S.
, and
Li
,
W.
,
2011
, “
Unit Process Energy Consumption Models for Material Removal Processes
,”
CIRP Ann.
,
60
(
1
), pp.
37
40
. 10.1016/j.cirp.2011.03.018
56.
Munoz
,
A. A.
, and
Sheng
,
P.
,
1995
, “
An Analytical Approach for Determining the Environmental Impact of Machining Processes
,”
J. Mater. Process. Technol.
,
53
(
3–4
), pp.
736
758
. 10.1016/0924-0136(94)01764-R
57.
Dittrich
,
M. A.
,
Gutowski
,
T. G.
,
Cao
,
J.
,
Roth
,
J. T.
,
Xia
,
Z. C.
,
Kiridena
,
V.
,
Ren
,
F.
, and
Henning
,
H.
,
2012
, “
Exergy Analysis of Incremental Sheet Forming
,”
Prod. Eng.
,
6
(
2
), pp.
169
177
. 10.1007/s11740-012-0375-9
58.
Ehmann
,
K. F.
,
Kapoor
,
S. G.
,
DeVor
,
R. E.
, and
Lazoglu
,
I.
,
1997
, “
Machining Process Modeling: A Review
,”
ASME J. Manuf. Sci. Eng.
,
119
(
4B
), pp.
655
663
. 10.1115/1.2836805
59.
Malkin
,
S.
, and
Guo
,
C.
,
2007
, “
Thermal Analysis of Grinding
,”
CIRP Ann.
,
56
(
2
), pp.
760
782
. 10.1016/j.cirp.2007.10.005
60.
Bi
,
Z. M.
, and
Wang
,
L.
,
2012
, “
Optimization of Machining Processes From the Perspective of Energy Consumption: A Case Study
,”
J. Manuf. Syst.
,
31
(
4
), pp.
420
428
. 10.1016/j.jmsy.2012.07.002
61.
Cooper
,
D. R.
,
Rossie
,
K. E.
, and
Gutowski
,
T. G.
,
2017
, “
An Environmental and Cost Analysis of Stamping Sheet Metal Parts
,”
ASME J. Manuf. Sci. Eng.
,
139
(
4
), p.
041012
. 10.1115/1.4034670
62.
Diaz
,
N.
,
Ninomiya
,
K.
,
Noble
,
J.
, and
Dornfeld
,
D.
,
2012
, “
Environmental Impact Characterization of Milling and Implications for Potential Energy Savings in Industry
,”
Procedia CIRP
,
1
, pp.
518
523
. 10.1016/j.procir.2012.04.092
63.
Diaz
,
N.
,
Redelsheimer
,
E.
, and
Dornfeld
,
D.
,
2011
, “Energy Consumption Characterization and Reduction Strategies for Milling Machine Tool Use,”
Glocalized Solutions for Sustainability in Manufacturing
,
Springer
,
Berlin, Heidelberg
, pp.
263
267
.
64.
Li
,
T.
, and
Yuan
,
C.
,
2013, June
, “
Numerical Modeling of Specific Energy Consumption in Machining Process
,”
Proceedings of ASME 2013 International Manufacturing Science and Engineering Conference Collocated With the 41st North American Manufacturing Research Conference
,
American Society of Mechanical Engineers Digital Collection
.
65.
Diaz
,
N.
,
Helu
,
M.
,
Jayanathan
,
S.
,
Chen
,
Y.
,
Horvath
,
A.
, and
Dornfeld
,
D.
,
2010, May
, “
Environmental Analysis of Milling Machine Tool Use in Various Manufacturing Environments
,”
Proceedings of the 2010 IEEE International Symposium on Sustainable Systems and Technology
,
IEEE
, pp.
1
6
.
66.
Chen
,
D.
,
Schudeleit
,
T.
,
Posselt
,
G.
, and
Thiede
,
S.
,
2013
, “
A State-of-the-art Review and Evaluation of Tools for Factory Sustainability Assessment
,”
Procedia CIRP
,
9
, pp.
85
90
. 10.1016/j.procir.2013.06.173
67.
Herrmann
,
C.
,
Thiede
,
S.
,
Kara
,
S.
, and
Hesselbach
,
J.
,
2011
, “
Energy Oriented Simulation of Manufacturing Systems–Concept and Application
,”
CIRP Ann.
,
60
(
1
), pp.
45
48
. 10.1016/j.cirp.2011.03.127
68.
Herrmann
,
C.
, and
Thiede
,
S.
,
2009
, “
Process Chain Simulation to Foster Energy Efficiency in Manufacturing
,”
CIRP J. Manuf. Sci. Technol.
,
1
(
4
), pp.
221
229
. 10.1016/j.cirpj.2009.06.005
69.
Hesselbach
,
J.
,
Herrmann
,
C.
,
Detzer
,
R.
,
Martin
,
L.
,
Thiede
,
S.
, and
Ludemann
,
B.
,
2008
, “
Energy Efficiency Through Optimised Coordination of Production and Technical Building Services
,”
LCE 2008: 15th CIRP International Conference on Life Cycle Engineering: Conference Proceedings
,
CIRP
, p.
624
.
70.
Thiede
,
S.
,
Seow
,
Y.
,
Andersson
,
J.
, and
Johansson
,
B.
,
2013
, “
Environmental Aspects in Manufacturing System Modelling and Simulation—State of the Art and Research Perspectives
,”
CIRP J. Manuf. Sci. Technol.
,
6
(
1
), pp.
78
87
. 10.1016/j.cirpj.2012.10.004
71.
Diaz
,
N.
, and
Dornfeld
,
D.
,
2012
, “Cost and Energy Consumption Optimization of Product Manufacture in a Flexible Manufacturing System,”
Leveraging Technology for a Sustainable World
,
Springer
,
Berlin, Heidelberg
, pp.
411
416
.
72.
Fang
,
K.
,
Uhan
,
N.
,
Zhao
,
F.
, and
Sutherland
,
J. W.
,
2011
, “
A New Approach to Scheduling in Manufacturing for Power Consumption and Carbon Footprint Reduction
,”
J. Manuf. Syst.
,
30
(
4
), pp.
234
240
. 10.1016/j.jmsy.2011.08.004
73.
Li
,
L.
,
Sun
,
Z.
,
Yang
,
H.
, and
Gu
,
F.
,
2012, June
, “
Simulation-Based Energy Efficiency Improvement for Sustainable Manufacturing Systems
,”
ASME 2012 International Manufacturing Science and Engineering Conference Collocated With the 40th North American Manufacturing Research Conference and in Participation With the International Conference on Tribology Materials and Processing
,
American Society of Mechanical Engineers Digital Collection
,
New York
, pp.
1033
1039
.
74.
Sutherland
,
J. W.
, and
Haapala
,
K. R.
,
2007
, “
Optimization of Steel Production to Improve Lifecycle Environmental Performance
,”
CIRP Ann.
,
56
(
1
), pp.
5
8
. 10.1016/j.cirp.2007.05.003
75.
Wang
,
J.
,
Li
,
J.
, and
Huang
,
N.
,
2009, January
, “
Optimal Scheduling to Achieve Energy Reduction in Automotive Paint Shops
,”
ASME 2009 International Manufacturing Science and Engineering Conference
,
American Society of Mechanical Engineers Digital Collection
, pp.
161
167
.
76.
Krishnan
,
N.
, and
Sheng
,
P. S.
,
2000
, “
Environmental Versus Conventional Planning for Machined Components
,”
CIRP Ann.
,
49
(
1
), pp.
363
366
. 10.1016/S0007-8506(07)62965-5
77.
Srinivasan
,
M.
, and
Sheng
,
P.
,
1999
, “
Feature-Based Process Planning for Environmentally Conscious Machining–Part 1: Microplanning
,”
Rob. Comput.-Integr. Manuf.
,
15
(
3
), pp.
257
270
. 10.1016/S0736-5845(99)00017-4
78.
Srinivasan
,
M.
, and
Sheng
,
P.
,
1999
, “
Feature Based Process Planning in Environmentally Conscious Machining–Part 2: Macroplanning
,”
Rob. Comput.-Integr. Manuf.
,
15
(
3
), pp.
271
281
. 10.1016/S0736-5845(99)00018-6
79.
Zhao
,
F.
,
Murray
,
V. R.
,
Ramani
,
K.
, and
Sutherland
,
J. W.
,
2012
, “
Toward the Development of Process Plans With Reduced Environmental Impacts
,”
Frontiers Mech. Eng.
,
7
(
3
), pp.
231
246
. 10.1007/s11465-012-0334-3
80.
Aguado
,
S.
,
Alvarez
,
R.
, and
Domingo
,
R.
,
2013
, “
Model of Efficient and Sustainable Improvements in a Lean Production System Through Processes of Environmental Innovation
,”
J. Cleaner Prod.
,
47
, pp.
141
148
. 10.1016/j.jclepro.2012.11.048
81.
Diaz-Elsayed
,
N.
,
Jondral
,
A.
,
Greinacher
,
S.
,
Dornfeld
,
D.
, and
Lanza
,
G.
,
2013
, “
Assessment of Lean and Green Strategies by Simulation of Manufacturing Systems in Discrete Production Environments
,”
CIRP Ann.
,
62
(
1
), pp.
475
478
. 10.1016/j.cirp.2013.03.066
82.
Alsaffar
,
A. J.
,
Raoufi
,
K.
,
Kim
,
K. Y.
,
Okudan Kremer
,
G. E.
, and
Haapala
,
K. R.
,
2016
, “
Simultaneous Consideration of Unit Manufacturing Processes and Supply Chain Activities for Reduction of Product Environmental and Social Impacts
,”
ASME J. Manuf. Sci. Eng.
,
138
(
10
). 10.1115/1.4034481
83.
Despeisse
,
M.
,
Ball
,
P. D.
,
Evans
,
S.
, and
Levers
,
A.
,
2012
, “
Industrial Ecology at Factory Level—A Conceptual Model
,”
J. Cleaner Prod.
,
31
, pp.
30
39
. 10.1016/j.jclepro.2012.02.027
84.
Peralta Alvarez
,
M. E.
,
Marcos Barcena
,
M.
, and
Aguayo Gonzalez
,
F.
,
2016
, “
A Review of Sustainable Machining Engineering: Optimization Process Through Triple Bottom Line
,”
ASME J. Manuf. Sci. Eng.
,
138
(
10
), p.
10
. 10.1115/1.4034277
85.
Tong
,
A.
,
Calvo
,
J.
, and
Haapala
,
K. R.
,
2018
, “
Integration of Sustainability Indicators and the Viable System Model Towards a Systemic Sustainability Assessment Methodology
,”
Sys. Res. Behav. Sci.
,
35
(
5
), pp.
564
587
. 10.1002/sres.2553
86.
Zhang
,
H.
, and
Haapala
,
K. R.
,
2015
, “
Integrating Sustainable Manufacturing Assessment Into Decision Making for a Production Work Cell
,”
J. Cleaner Prod.
,
105
, pp.
52
63
. 10.1016/j.jclepro.2014.01.038
87.
Jiménez-González
,
C.
,
Kim
,
S.
, and
Overcash
,
M. R.
,
2000
, “
Methodology for Developing Gate-to-Gate Life Cycle Inventory Information
,”
Int. J. Life Cycle Assess.
,
5
(
3
), pp.
153
159
. 10.1007/BF02978615
88.
Linke
,
B.
, and
Overcash
,
M.
,
2017
, “
Reusable Unit Process Life Cycle Inventory for Manufacturing: Grinding
,”
Prod. Eng.
,
11
(
6
), pp.
643
653
. 10.1007/s11740-017-0768-x
89.
Overcash
,
M.
,
Twomey
,
J.
, and
Kalla
,
D.
,
2009, January
, “
Unit Process Life Cycle Inventory for Product Manufacturing Operations
,”
Proceedings of ASME 2009 International Manufacturing Science and Engineering Conference
,
American Society of Mechanical Engineers Digital Collection
,
New York
, pp.
49
55
.
90.
Zhang
,
H.
, and
Zhao
,
F.
,
2019
, “
Reusable Unit Process Life Cycle Inventory for Manufacturing: Gas Metal Arc Welding
,”
Prod. Eng.
,
13
(
1
), pp.
89
97
. 10.1007/s11740-018-0869-1
91.
Duflou
,
J. R.
,
Kellens
,
K.
, and
Dewulf
,
W.
,
2011
, “
Unit Process Impact Assessment for Discrete Part Manufacturing: A State of the Art
,”
CIRP J. Manuf. Sci. Technol.
,
4
(
2
), pp.
129
135
. 10.1016/j.cirpj.2011.01.008
92.
Kellens
,
K.
,
Rodrigues
,
G. C.
,
Dewulf
,
W.
, and
Duflou
,
J. R.
,
2014
, “
Energy and Resource Efficiency of Laser Cutting Processes
,”
Phys. Procedia
,
56
, pp.
854
864
. 10.1016/j.phpro.2014.08.104
93.
Kellens
,
K.
,
Yasa
,
E.
,
Renaldi
,
R.
,
Dewulf
,
W.
,
Kruth
,
J. P.
, and
Duflou
,
J.
,
2011
, “
Energy and Resource Efficiency of SLS/SLM Processes (Keynote Paper)
,”
SFF Symposium 2011
, pp.
1
16
.
94.
Kellens
,
K.
,
Dewulf
,
W.
,
Overcash
,
M.
,
Hauschild
,
M. Z.
, and
Duflou
,
J. R.
,
2012
, “
Methodology for Systematic Analysis and Improvement of Manufacturing Unit Process Life-Cycle Inventory (UPLCI)—CO 2 PE! Initiative (Cooperative Effort on Process Emissions in Manufacturing). Part 1: Methodology Description
,”
Int. J. Life Cycle Assess.
,
17
(
1
), pp.
69
78
. 10.1007/s11367-011-0340-4
95.
Kellens
,
K.
,
Dewulf
,
W.
,
Overcash
,
M.
,
Hauschild
,
M. Z.
, and
Duflou
,
J. R.
,
2012
, “
Methodology for Systematic Analysis and Improvement of Manufacturing Unit Process Life Cycle Inventory (UPLCI) CO 2 PE! Initiative (Cooperative Effort on Process Emissions in Manufacturing). Part 2: Case Studies
,”
Int. J. Life Cycle Assess.
,
17
(
2
), pp.
242
251
. 10.1007/s11367-011-0352-0
96.
Garretson
,
I. C.
,
Mani
,
M.
,
Leong
,
S.
,
Lyons
,
K. W.
, and
Haapala
,
K. R.
,
2016
, “
Terminology to Support Manufacturing Process Characterization and Assessment for Sustainable Production
,”
J. Cleaner Prod.
,
139
, pp.
986
1000
. 10.1016/j.jclepro.2016.08.103
97.
Mani
,
M.
,
Larborn
,
J.
,
Johansson
,
B.
,
Lyons
,
K. W.
, and
Morris
,
K. C.
,
2016
, “
Standard Representations for Sustainability Characterization of Industrial Processes
,”
ASME J. Manuf. Sci. Eng.
,
138
(
10
), p.
101008
. 10.1115/1.4033922
98.
Mani
,
M.
,
Lyons
,
K. W.
, and
Gupta
,
S. K.
,
2014
, “
Sustainability Characterization for Additive Manufacturing
,”
J. Res. Natl. Inst. Stand. Technol.
,
119
, p.
419
. 10.6028/jres.119.016
99.
Mani
,
M.
,
Madan
,
J.
,
Lee
,
J. H.
,
Lyons
,
K. W.
, and
Gupta
,
S. K.
,
2014
, “
Sustainability Characterisation for Manufacturing Processes
,”
Int. J. Prod. Res.
,
52
(
20
), pp.
5895
5912
. 10.1080/00207543.2014.886788
100.
Mani
,
M.
,
Madan
,
J.
,
Lee
,
J. H.
,
Lyons
,
K. W.
, and
Gupta
,
S. K.
,
2013
,
Review on Sustainability Characterization for Manufacturing Processes
.
National Institute of Standards and Technology
,
Gaithersburg, MD
,
Report No. NISTIR, 7913
.
101.
Shankar Raman
,
A.
,
Haapala
,
K. R.
, and
Morris
,
K. C.
,
2018
, “
Towards a Standards-Based Methodology for Extending Manufacturing Process Models for Sustainability Assessment
,”
ASME 2018 13th International Manufacturing Science and Engineering Conference
,
American Society of Mechanical Engineers Digital Collection
,
New York
.
102.
Smullin
,
M. M.
,
Garretson
,
I. C.
, and
Haapala
,
K. R.
,
2016, June
, “
Composability of Unit Manufacturing Process Models for Manufacturing Systems Analysis
,”
Proceedings of ASME 2016 11th International Manufacturing Science and Engineering Conference
,
American Society of Mechanical Engineers Digital Collection
.
103.
Bernstein
,
W. Z.
,
Lechevalier
,
D.
, and
Libes
,
D.
,
2018, June
, “
UMP Builder: Capturing and Exchanging Manufacturing Models for Sustainability
,”
In ASME 2018 13th International Manufacturing Science and Engineering Conference
,
American Society of Mechanical Engineers Digital Collection
.
104.
Brodsky
,
A.
,
Nachawati
,
M. O.
,
Krishnamoorthy
,
M.
,
Bernstein
,
W. Z.
, and
Menascé
,
D. A.
,
2019
, “
Factory Optima: a web-Based System for Composition and Analysis of Manufacturing Service Networks Based on a Reusable Model Repository
,”
Int. J. Comput. Integr. Manuf.
,
32
(
3
), pp.
206
224
. 10.1080/0951192X.2019.1570805
105.
ASTM
,
2019
,
Subcommittee E60.13: Published standards under E60.13 jurisdiction
, https://www.astm.org/COMMIT/SUBCOMMIT/E6013.htm, Accessed August 29, 2019.
106.
Bernstein
,
W. Z.
,
Subramaniyan
,
A. B.
,
Brodsky
,
A.
,
Garretson
,
I. C.
,
Haapala
,
K. R.
,
Libes
,
D.
,
Morris
,
K. C.
,
Pan
,
R.
,
Prabhu
,
V.
,
Sarkar
,
A.
, and
Raman
,
A. S.
,
2018
, “
Research Directions for an Open Unit Manufacturing Process Repository: A Collaborative Vision
,”
Manuf. Lett.
,
15
, pp.
71
75
. 10.1016/j.mfglet.2017.12.007
107.
Bernstein
,
W. Z.
,
Mani
,
M.
,
Lyons
,
K. W.
,
Morris
,
K. C.
, and
Johansson
,
B.
,
2016, August
, “
An Open web-Based Repository for Capturing Manufacturing Process Information
,”
ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
American Society of Mechanical Engineers Digital Collection
,
New York
.
108.
Brundage
,
M. P.
,
Lechevalier
,
D.
, and
Morris
,
K. C.
,
2019
, “
Toward Standards-Based Generation of Reusable Life Cycle Inventory Data Models for Manufacturing Processes
,”
ASME J. Manuf. Sci. Eng.
,
141
(
2
), p.
021017
. 10.1115/1.4041947
109.
Cooper
,
D. R.
,
Rossie
,
K. E.
, and
Gutowski
,
T. G.
,
2017
, “
The Energy Requirements and Environmental Impacts of Sheet Metal Forming: An Analysis of Five Forming Processes
,”
J. Mater. Process. Technol.
,
244
, pp.
116
135
. 10.1016/j.jmatprotec.2017.01.010
110.
Tekkaya
,
A. E.
,
Schikorra
,
M.
,
Becker
,
D.
,
Biermann
,
D.
,
Hammer
,
N.
, and
Pantke
,
K.
,
2009
, “
Hot Profile Extrusion of AA-6060 Aluminum Chips
,”
J. Mater. Process. Technol.
,
209
(
7
), pp.
3343
3350
. 10.1016/j.jmatprotec.2008.07.047
111.
Milford
,
R. L.
,
Allwood
,
J. M.
, and
Cullen
,
J. M.
,
2011
, “
Assessing the Potential of Yield Improvements, Through Process Scrap Reduction, for Energy and CO2 Abatement in the Steel and Aluminium Sectors
,”
Resour. Conserv. Recycl.
,
55
(
12
), pp.
1185
1195
. 10.1016/j.resconrec.2011.05.021
112.
Hardin
,
R. A.
, and
Beckermann
,
C.
,
1997
, “
The Current State of Casting Yield: Results From the 1997 SFSA Yield Survey
,”
Proceedings of the 51st SFSA Technical and Operating Conference
,
Chicago, IL
,
Paper No. 3.5, Steel Founders’ Society of America
.
113.
Schlesinger
,
M. E.
,
2014
,
Aluminum Recycling
,
CRC press
.
114.
Cullen
,
J. M.
,
Allwood
,
J. M.
, and
Bambach
,
M. D.
,
2012
, “
Mapping the Global Flow of Steel: From Steelmaking to End-Use Goods
,”
Environ. Sci. Technol.
,
46
(
24
), pp.
13048
13055
. 10.1021/es302433p
115.
Cullen
,
J. M.
, and
Allwood
,
J. M.
,
2013
, “
Mapping the Global Flow of Aluminum: From Liquid Aluminum to End-Use Goods
,”
Environ. Sci. Technol.
,
47
(
7
), pp.
3057
3064
. 10.1021/es304256s
116.
Zhu
,
Y.
,
Syndergaard
,
K.
, and
Cooper
,
D. R.
,
2019
, “
Mapping the Annual Flow of Steel in the United States
,”
Environ. Sci. Technol.
,
53
(
19
), pp.
11260
11268
. 10.1021/acs.est.9b01016
117.
Horton
,
P. M.
, and
Allwood
,
J. M.
,
2017
, “
Yield Improvement Opportunities for Manufacturing Automotive Sheet Metal Components
,”
J. Mater. Process. Technol.
,
249
, pp.
78
88
. 10.1016/j.jmatprotec.2017.05.037
118.
Morgan
,
J. M.
, and
Liker
,
J. K.
,
2018
,
Designing the Future: How Ford, Toyota, and Other World-Class Organizations Use Lean Product Development to Drive Innovation and Transform Their Business: How Ford, Toyota, and Other World-Class Organizations Use Lean Product Development to Drive Innovation and Transform Their Business
,
McGraw Hill Professional
.
119.
Flint
,
I. P.
,
Allwood
,
J. M.
, and
Serrenho
,
A. C.
,
2019
, “
Scrap, Carbon and Cost Savings From the Adoption of Flexible Nested Blanking
,”
Int. J. Adv. Manuf. Technol.
, pp.
1
11
. 10.1007/s00170-019-03995-6
120.
Black
,
J. T.
, and
Kohser
,
R. A.
,
2017
,
DeGarmo's Materials and Processes in Manufacturing
,
John Wiley & Sons
.
121.
Gooch
,
J.W.
ed.,
2011
.
Encyclopedic Dictionary of Polymers
, 2nd ed.
Springer Science & Business Media
.
122.
Cooper
,
D. R.
,
Song
,
J.
, and
Gerard
,
R.
,
2018
, “
Metal Recovery During Melting of Extruded Machining Chips
,”
J. Cleaner Prod.
,
200
, pp.
282
292
. 10.1016/j.jclepro.2018.07.246
123.
Carruth
,
M. A.
,
Allwood
,
J. M.
, and
Moynihan
,
M. C.
,
2011
, “
The Technical Potential for Reducing Metal Requirements Through Lightweight Product Design
,”
Resour. Conserv. Recycl.
,
57
, pp.
48
60
. 10.1016/j.resconrec.2011.09.018
124.
Huang
,
R.
,
Riddle
,
M.
,
Graziano
,
D.
,
Warren
,
J.
,
Das
,
S.
,
Nimbalkar
,
S.
,
Cresko
,
J.
, and
Masanet
,
E.
,
2016
, “
Energy and Emissions Saving Potential of Additive Manufacturing: the Case of Lightweight Aircraft Components
,”
J. Cleaner Prod.
,
135
, pp.
1559
1570
. 10.1016/j.jclepro.2015.04.109
125.
Carruth
,
M. A.
, and
Allwood
,
J. M.
,
2012
, “
The Development of a Hot Rolling Process for Variable Cross-Section I-Beams
,”
J. Mater. Process. Technol.
,
212
(
8
), pp.
1640
1653
. 10.1016/j.jmatprotec.2012.03.006
126.
Hirt
,
G.
, and
Bambach
,
M.
,
2012
,
Incremental Sheet Forming. Sheet Metal Forming Processes and Applications
,
ASM International
.
127.
Daehn
,
G.
,
Kinsella
,
M.
,
Mullins
,
B.
,
Myers
,
R.
, and
Utley
,
J.
,
2017
,
Metamorphic Manufacturing : The Third Wave of Digital Manufacturing For Improved Competitiveness and National Security Preliminary Summary and Vision January 2017 LIFT Task Force on Metamorphic Manufacturing
.
128.
Diaz
,
N.
,
Helu
,
M.
,
Jayanathan
,
S.
,
Chen
,
Y.
,
Horvath
,
A.
, and
Dornfeld
,
D.
,
2010
, “
Environmental Analysis of Milling Machine Tool Use in Various Manufacturing Environments
,”
IEEE International Symposium on Sustainable Systems and Technology
.
129.
Herrmann
,
C.
,
Zein
,
A.
,
Thiede
,
S.
,
Bergmann
,
L.
, and
Bock
,
R.
,
2008
, “
Bringing Sustainable Manufacturing Into Practice—the Machine Tool Case
,”
Sustainable Manufacturing VI: Global Conference on Sustainable Product Development and Life Cycle Engineering
,
Pusan, Korea
.
130.
Dahmus
,
J. B.
, and
Gutowski
,
T. G.
,
2004, January
, “
An Environmental Analysis of Machining
,”
In ASME 2004 International Mechanical Engineering Congress and Exposition
,
American Society of Mechanical Engineers
,
New York
, pp.
643
652
.
131.
Zein
,
A.
,
Li
,
W.
,
Herrmann
,
C.
, and
Kara
,
S.
,
2011
, “Energy Efficiency Measures for the Design and Operation of Machine Tools: An Axiomatic Approach,”
Glocalized Solutions for Sustainability in Manufacturing
,
J.
Hesselbach
, and
C.
Herrmann
,
Berlin, Heidelberg: Springer
, pp.
274
279
.
132.
Zhao
,
L.
,
Ma
,
J.
,
Wang
,
T.
, and
Xing
,
D.
,
2010
, “
Lightweight Design of Mechanical Structures Based on Structural Bionic Methodology
,”
J. Bionic Eng.
,
7
(
4
), pp.
S224
S231
. 10.1016/S1672-6529(09)60239-0
133.
Triebe
,
M. J.
,
Zhao
,
F.
, and
Sutherland
,
J. W.
,
2019
, “
Achieving Energy Efficient Machine Tools by Mass Reduction Through Multi-Objective Optimization
,”
Procedia CIRP
,
80
, pp.
73
78
. 10.1016/j.procir.2019.01.085
134.
Peukert
,
B.
,
Saoji
,
M.
, and
Uhlmann
,
E.
, 2015, “
An Evaluation of Building Sets Designed for Modular Machine Tool Structures to Support Sustainable Manufacturing
,”
Procedia CIRP, 12th Global Conference on Sustainable Manufacturing—Emerging Potentials
,
Johor Bahru, Malaysia
, Vol.
26 Jan. 1
, pp.
612
617
.
135.
Peukert
,
B.
,
Benecke
,
S.
,
Clavell
,
J.
,
Neugebauer
,
S.
,
Nissen
,
N. F.
,
Uhlmann
,
E.
,
Lang
,
K.-D.
, and
Finkbeiner
,
M.
, 2015, “
Addressing Sustainability and Flexibility in Manufacturing Via Smart Modular Machine Tool Frames to Support Sustainable Value Creation
,”
Procedia CIRP, The 22nd CIRP Conference on Life Cycle Engineering
,
Sydney, Australia
, Vol.
29
,
Jan. 1
, pp.
514
519
.
136.
Zhao
,
L.
,
Chen
,
W. Y.
,
Ma
,
J. F.
, and
Yang
,
Y. B.
,
2008
, “
Structural Bionic Design and Experimental Verification of a Machine Tool Column
,”
J. Bionic Eng.
,
5
, pp.
46
52
. 10.1016/S1672-6529(08)60071-2
137.
Li
,
B.
,
Hong
,
J.
, and
Liu
,
Z.
,
2014
, “
Stiffness Design of Machine Tool Structures by a Biologically Inspired Topology Optimization Method
,”
Int. J. Mach. Tools Manuf.
,
84
, pp.
33
44
. 10.1016/j.ijmachtools.2014.03.005
138.
Neugebauer
,
R.
,
Wabner
,
M.
,
Ihlenfeldt
,
S.
,
Frieß
,
U.
,
Schneider
,
F.
, and
Schubert
,
F.
,
2012
, “
Bionics Based Energy Efficient Machine Tool Design
,”
Procedia CIRP
,
3
, pp.
561
566
. 10.1016/j.procir.2012.07.096
139.
Duan
,
M.
, and
Okwudire
,
C. E.
,
August 2016
, “
Energy-Efficient Controller Design for a Redundantly Actuated Hybrid Feed Drive With Application to Machining
,”
IEEE/ASME Trans. Mech.
,
21
(
4
), pp.
1822
1834
. 10.1109/TMECH.2015.2500165
140.
Kale
,
S.
,
Dancholvichit
,
N.
, and
Okwudire
,
C.
, “
Comparative LCA of a Linear Motor and Hybrid Feed Drive Under High Cutting Loads
,”
Procedia CIRP, 6th CIRP International Conference on High Performance Cutting, HPC2014
, Vol.
14, Jan, 1, 2014
, pp.
552
557
.
141.
Abele
,
E.
,
Sielaff
,
T.
,
Schiffler
,
A.
, and
Rothenbücher
,
S.
,
2011
, “Analyzing Energy Consumption of Machine Tool Spindle Units and Identification of Potential for Improvements of Efficiency,”
Glocalized Solutions for Sustainability in Manufacturing
,
J.
Hesselbach
, and
C.
Herrmann
, eds.,
Springer
,
Berlin, Heidelberg
, pp.
280
285
.
142.
Diaz
,
N.
,
Choi
,
S.
,
Helu
,
M.
,
Chen
,
Y.
,
Jayanathan
,
S.
,
Yasui
,
Y.
,
Kong
,
D.
,
Pavanaskar
,
S.
, and
Dornfeld
,
D.
,
2010
, “
Machine Tool Design and Operation Strategies for Green Manufacturing
,”
Proceedings of 4th CIRP International Conference on High Performance Cutting
,
Gifu, Japan
, pp.
1
6
.
143.
Bengtsson
,
M.
, and
Kurdve
,
M.
,
1 January 2016
, “
Machining Equipment Life Cycle Costing Model with Dynamic Maintenance Cost
,”
Procedia CIRP, The 23rd CIRP Conference on Life Cycle Engineering
, Vol.
48
, pp.
102
107
.
144.
Duflou
,
J. R.
,
Kellens
,
K.
,
Devoldere
,
T.
,
Deprez
,
W.
, and
Dewulf
,
W.
,
1 January 2010
, “
Energy Related Environmental Impact Reduction Opportunities in Machine Design: Case Study of a Laser Cutting Machine
,”
Int. J. Sustainable Manuf.
,
2
(
1
), pp.
80
98
. 10.1504/IJSM.2010.031621
145.
Inman
,
H.
,
2010
,
The Greening of Plastics Machining
, pp.
6
12
.
146.
Li
,
L.
,
Huang
,
H.
,
Zhao
,
F.
,
Triebe
,
M. J.
, and
Liu
,
Z.
,
2017
, “
Analysis of a Novel Energy-Efficient System With Double-Actuator for Hydraulic Press
,”
Mechatronics
,
47
, pp.
77
87
. 10.1016/j.mechatronics.2017.08.012
147.
Li
,
L.
,
Huang
,
H.
,
Zhao
,
F.
,
Sutherland
,
J. W.
, and
Liu
,
Z.
,
2017
, “
An Energy-Saving Method by Balancing the Load of Operations for Hydraulic Press
,”
IEEE/ASME Trans. Mech.
,
22
(
6
), pp.
2673
2683
. 10.1109/TMECH.2017.2759228
148.
Li
,
L.
,
Huang
,
H.
,
Zhao
,
F.
, and
Liu
,
Z.
,
2017
, “
Operation Scheduling of Multi-Hydraulic Press System for Energy Consumption Reduction
,”
J. Cleaner Prod.
,
165
, pp.
1407
1419
. 10.1016/j.jclepro.2017.07.158
149.
Gungor
,
Z. E.
, and
Evans
,
S.
,
1 January 2015
, “
Eco-Effective Changeovers; Changing a Burden Into a Manufacturing Capability
,”
Procedia CIRP, 12th Global Conference on Sustainable Manufacturing—Emerging Potentials
, Vol.
26
, pp.
527
532
.
150.
Huang
,
A.
,
Badurdeen
,
F.
, and
Jawahir
,
I. S.
,
2018
, “
Towards Developing Sustainable Reconfigurable Manufacturing Systems
,”
Procedia Manufacturing, 28th International Conference on Flexible Automation and Intelligent Manufacturing (FAIM2018)
,
Columbus, OH
,
June 11–14
,
Global Integration of Intelligent Manufacturing and Smart Industry for Good of Humanity
, Vol.
17
.
151.
Chavarría-Barrientos
,
D.
,
Batres
,
R.
,
Wright
,
P. K.
, and
Molina
,
A.
,
17 January 2018
, “
A Methodology to Create a Sensing, Smart and Sustainable Manufacturing Enterprise
,”
Int. J. Prod. Res.
,
56
(
1–2
), pp.
584
603
. 10.1080/00207543.2017.1386333
152.
Stock
,
T.
, and
Seliger
,
G.
,
2016
, “
Opportunities of Sustainable Manufacturing in Industry 4.0
,”
Procedia Cirp
,
40
, pp.
536
541
. 10.1016/j.procir.2016.01.129
153.
Ren
,
S.
,
Zhang
,
Y.
,
Liu
,
Y.
,
Sakao
,
T.
,
Huisingh
,
D.
, and
Almeida
,
C. M. V. B.
,
10 February 2019
, “
A Comprehensive Review of Big Data Analytics Throughout Product Lifecycle to Support Sustainable Smart Manufacturing: A Framework, Challenges and Future Research Directions
,”
J. Cleaner Prod.
,
210
, pp.
1343
1365
. 10.1016/j.jclepro.2018.11.025
154.
Kaiser
,
K. A.
, and
Gebraeel
,
N. Z.
,
2009
, “
Predictive Maintenance Management Using Sensor-Based Degradation Models
,”
IEEE Trans. Systems, Man, Cybernetics-Part A: Systems Humans
,
39
(
4
), pp.
840
849
.
155.
Auschitzky
,
E.
,
Hammer
,
M.
, and
Rajagopaul
,
A.
,
2014
,
How big Data can Improve Manufacturing
,
McKinsey & Company
, p.
822
.
156.
Kwak
,
D. S.
, and
Kim
,
K. J.
,
2012
, “
A Data Mining Approach Considering Missing Values for the Optimization of Semiconductor-Manufacturing Processes
,”
Expert Syst. App.
,
39
(
3
), pp.
2590
2596
. 10.1016/j.eswa.2011.08.114
157.
Ingram Micro, 2017, 4 Big Data Use Cases in the Manufacturing Industry
,
Big Data Use Cases in the Manufacturing Industry
, http://imaginenext.ingrammicro.com/data-center/4-big-data-use-cases-in-the-manufacturing-industry, Accessed August 10, 2020.
158.
Elangovan
,
M.
,
Sakthivel
,
N. R.
,
Saravanamurugan
,
S.
,
Nair
,
B. B.
, and
Sugumaran
,
V.
,
2015
, “
Machine Learning Approach to the Prediction of Surface Roughness Using Statistical Features of Vibration Signal Acquired in Turning
,”
Procedia Comput. Sci.
,
50
, pp.
282
288
. 10.1016/j.procs.2015.04.047
159.
Intel
,
2013
,
2012-2013 Intel IT Annual Report: Accelerating Business Growth Through IT
.
160.
Wang
,
S.
,
Wan
,
J.
,
Li
,
D.
, and
Zhang
,
C.
,
2016
, “
Implementing Smart Factory of Industrie 4.0: An Outlook
,”
Int. J. Distributed Sensor Networks
,
12
(
1
), p.
3159805
. 10.1155/2016/3159805
161.
Liu
,
Q.
,
Dong
,
M.
, and
Peng
,
Y.
,
2013
, “
A Dynamic Predictive Maintenance Model Considering Spare Parts Inventory Based on Hidden Semi-Markov Model
,”
Proc. Inst. Mech. Eng. Part C
,
227
(
9
), pp.
2090
2103
. 10.1177/0954406212469773
162.
Swat
,
M.
,
Brünnet
,
H.
, and
Bähre
,
D.
,
2014
, “Selecting Manufacturing Process Chains in the Early Stage of the Product Engineering Process With Focus on Energy Consumption,”
Technology and Manufacturing Process Selection
,
Springer
,
London
, pp.
153
173
.
163.
Uhlmann
,
E.
,
Fürstmann
,
P.
,
Rosenau
,
B.
,
Gebhard
,
S.
,
Gerstenberger
,
R.
, and
Müller
,
G.
,
2013,
The Potential of Reducing the Energy Consumption for Machining TiAl6V4 by Using Innovative Metal Cutting Processes
,”
In 11th Global Conference on Sustainable Manufacturing
,
G.
Seliger
, ed.,
Universitätsverlag, Berlin
, pp.
646
651
.
164.
Yan
,
K.
,
Xu
,
W.
,
Yao
,
B.
,
Zhou
,
Z.
, and
Pham
,
D. T.
,
2018
, “Digital Twin-Based Energy Modeling of Industrial Robots,”
In Methods and Applications for Modeling and Simulation of Complex Systems
,
L.
Li
,
K.
Hasegawa
, and
S.
Tanaka
, ed.,
Communications in Computer and Information Science Springer
,
Singapore
, pp.
333
348
.
165.
Barni
,
A.
,
Fontana
,
A.
,
Menato
,
S.
,
Sorlini
,
M.
, and
Canetta
,
L.
,
2018
, “
Exploiting the Digital Twin in the Assessment and Optimization of Sustainability Performances
,”
2018 International Conference on Intelligent Systems (IS)
, pp.
706
713
166.
Fisher
,
O.
,
Watson
,
N.
,
Porcu
,
L.
,
Bacon
,
D.
,
Rigley
,
M.
, and
Gomes
,
R. L.
,
1 April 2018
, “
Cloud Manufacturing as a Sustainable Process Manufacturing Route
,”
J. Manuf. Syst.
,
47
, pp.
53
68
. 10.1016/j.jmsy.2018.03.005
167.
Wang
,
X. V.
, and
Xu
,
X.
,
2014
, “
Cloud Manufacturing in Support of Sustainability
,”
Am. Soc. Mech. Eng. Digital Collect.
,
45806
, p.
V001T04A014
. 10.1115/MSEC2014-4020
168.
Liu
,
J.
,
Xu
,
W.
,
Zhang
,
J.
,
Zhou
,
Z.
, and
Pham
,
D. T.
,
2016
, “
Industrial Cloud Robotics Towards Sustainable Manufacturing
,”
Am. Soc. Mech. Eng. Digital Collect.
,
49903
, p.
V002T04A017
. 10.1115/MSEC2016-8733
169.
Simon
,
T. R.
,
Aguilera
,
G. A.
, and
Zhao
,
F.
,
2017
, “
Characterization of Particle Emission From Fuse Deposition Modeling Printers
,”
Am. Soc. Mech. Eng. Digital Collect.
, Vol.
50732
, p.
V002T01A040
. 10.1115/MSEC2017-3007
170.
Nagarajan
,
H. P. N.
, and
Haapala
,
K. R.
,
1 July 2018
, “
Characterizing the Influence of Resource-Energy-Exergy Factors on the Environmental Performance of Additive Manufacturing Systems
,”
J. Manuf. Syst.
,
48
, pp.
87
96
. 10.1016/j.jmsy.2018.06.005
171.
Scallan
,
P.
,
2003
,
Process Planning: the Design/Manufacture Interface
,
Elsevier
,
New York
.
172.
Sheng
,
P.
,
Srinivasan
,
M.
, and
Kobayashi
,
S.
,
1995
, “
Multi-Objective Process Planning in Environmentally Conscious Manufacturing: A Feature-Based Approach
,”
CIRP Ann.
,
44
(
1
), pp.
433
437
. 10.1016/S0007-8506(07)62358-0
173.
Jin
,
K.
, and
Balasubramaniam
,
P.
,
2003
, “
December. A Fuzzy Model for Environmental Benign Process Planning Selection
,”
Proceedings of 3rd International Symposium on Environmentally Conscious Design and Inverse Manufacturing
, pp.
731
732
.
174.
Overcash
,
M.
,
Griffing
,
E.
,
Vozzola
,
E.
,
Twomey
,
J.
,
Flanagan
,
W.
, and
Isaacs
,
J.
,
2018
, “
Advancements in Unit Process Life Cycle Inventories (UPLCI) Tools
,”
Procedia CIRP
,
69
, pp.
447
450
. 10.1016/j.procir.2017.11.138
175.
ASTM E3012—16
,
2016
,
Standard Guide for Characterizing Environmental Aspects of Manufacturing Processes
,
ASTM International
.
177.
Shojaeipour
,
S.
,
2015
, “
Sustainable Manufacturing Process Planning
,”
Int. J. Adv. Manuf. Technol.
,
78
(
5–8
), pp.
1347
1360
. 10.1007/s00170-014-6705-7
178.
Guinee
,
J. B.
,
Heijungs
,
R.
,
Huppes
,
G.
,
Zamagni
,
A.
,
Masoni
,
P.
,
Buonamici
,
R.
,
Ekvall
,
T.
, and
Rydberg
,
T.
,
2010
,
Life Cycle Assessment: Past, Present, and Future
.
179.
Yin
,
R.
,
Cao
,
H.
,
Li
,
H.
, and
Sutherland
,
J. W.
,
2014
, “
A Process Planning Method for Reduced Carbon Emissions
,”
Int. J. Comput. Integr. Manuf.
,
27
(
12
), pp.
1175
1186
. 10.1080/0951192X.2013.874585
180.
He
,
Y.
,
Liu
,
F.
,
Cao
,
H.
, and
Zhang
,
H.
,
2007
, “
Process Planning Support System for Green Manufacturing and Its Application
,”
Frontiers Mech. Eng. China
,
2
(
1
), pp.
104
109
. 10.1007/s11465-007-0018-6
181.
Jiang
,
J.
,
Xu
,
X.
, and
Stringer
,
J.
,
2019
, “
Optimization of Process Planning for Reducing Material Waste in Extrusion Based Additive Manufacturing
,”
Rob. Comput.-Integr. Manuf.
,
59
, pp.
317
325
. 10.1016/j.rcim.2019.05.007
182.
Jin
,
Y.
,
Du
,
J.
, and
He
,
Y.
,
2017
, “
Optimization of Process Planning for Reducing Material Consumption in Additive Manufacturing
,”
J. Manuf. Syst.
,
44
, pp.
65
78
. 10.1016/j.jmsy.2017.05.003
183.
Zhang
,
Y.
,
Bernard
,
A.
,
Harik
,
R.
, and
Karunakaran
,
K. P.
,
2017
, “
Build Orientation Optimization for Multi-Part Production in Additive Manufacturing
,”
J. Intell Manuf.
,
28
(
6
), pp.
1393
1407
. 10.1007/s10845-015-1057-1
184.
Simon
,
T. R.
,
Aguilera
,
G. A.
, and
Zhao
,
F.
,
2017, June
, “
Characterization of Particle Emission From Fuse Deposition Modeling Printers
,”
ASME 2017 12th International Manufacturing Science and Engineering Conference Collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing
,
American Society of Mechanical Engineers Digital Collection
,
New York
.
185.
Subai
,
C.
,
Baptiste
,
P.
, and
Niel
,
E.
,
2006
, “
Scheduling Issues for Environmentally Responsible Manufacturing: The Case of Hoist Scheduling in an Electroplating Line
,”
Int. J. Prod. Econ.
,
99
(
1–2
), pp.
74
87
. 10.1016/j.ijpe.2004.12.008
186.
Biel
,
K.
, and
Glock
,
C. H.
,
2016
, “
Systematic Literature Review of Decision Support Models for Energy-Efficient Production Planning
,”
Comput. Ind. Eng.
,
101
, pp.
243
259
. 10.1016/j.cie.2016.08.021
187.
Gahm
,
C.
,
Denz
,
F.
,
Dirr
,
M.
, and
Tuma
,
A.
,
2016
, “
Energy-Efficient Scheduling in Manufacturing Companies: A Review and Research Framework
,”
Eur. J. Oper. Res.
,
248
(
3
), pp.
744
757
. 10.1016/j.ejor.2015.07.017
188.
Giret
,
A.
,
Trentesaux
,
D.
, and
Prabhu
,
V.
,
2015
, “
Sustainability in Manufacturing Operations Scheduling: A State of the Art Review
,”
J. Manuf. Syst.
,
37
, pp.
126
140
. 10.1016/j.jmsy.2015.08.002
189.
Wang
,
S.
,
Lu
,
X.
,
Li
,
X. X.
, and
Li
,
W. D.
,
2015
, “
A Systematic Approach of Process Planning and Scheduling Optimization for Sustainable Machining
,”
J. Cleaner Prod.
,
87
, pp.
914
929
. 10.1016/j.jclepro.2014.10.008
190.
Ellen MacArthur Foundation
,
2013
, “
Towards the Circular Economy
.”
191.
Yuan
,
Z.
,
Bi
,
J.
, and
Moriguichi
,
Y.
,
2006
, “
The Circular Economy: A New Development Strategy in China
,”
J. Ind. Ecol.
,
10
(
1–2
), pp.
4
8
. 10.1162/108819806775545321
192.
Circular Economy
,
2015
,
Implementation of the Circular Economy Action Plan
,
Brussels: European Commission
.
193.
Kirchherr
,
J.
,
Reike
,
D.
, and
Hekkert
,
M.
,
2017
, “
Conceptualizing the Circular Economy: An Analysis of 114 Definitions
,”
Resour. Conserv. Recycl.
,
127
, pp.
221
232
. 10.1016/j.resconrec.2017.09.005
194.
Lieder
,
M.
, and
Rashid
,
A.
,
2016
, “
Towards Circular Economy Implementation: a Comprehensive Review in Context of Manufacturing Industry
,”
J. Cleaner Prod.
,
115
, pp.
36
51
. 10.1016/j.jclepro.2015.12.042
195.
Haas
,
W.
,
Krausmann
,
F.
,
Wiedenhofer
,
D.
, and
Heinz
,
M.
,
2015
, “
How Circular is the Global Economy?: An Assessment of Material Flows, Waste Production, and Recycling in the European Union and the World in 2005
,”
J. Ind. Ecol.
,
19
(
5
), pp.
765
777
. 10.1111/jiec.12244
196.
Meadows
,
D. H.
,
Meadows
,
D. H.
,
Randers
,
J.
, and
Behrens
,
W. W.
III
,
1972
, “
The Limits to Growth: A Report to the Club of Rome (1972)
,”
Google Scholar
,
91
. 10.1349/ddlp.1
197.
Stahel
,
W.
, and
Reday
,
G.
,
1977
, “
The Potential for Substituting Manpower for Energy : Final Report 30 July 1977 for the Commission of the European Communities
.”.
198.
Pearce
,
D. W.
, and
Turner
,
R. K.
,
1990
,
Economics of Natural Resources and the Environment
,
JHU Press
.
199.
Chertow
,
M. R.
,
2000
, “
Industrial Symbiosis: Literature and Taxonomy
,”
Ann. Rev. Energy Environ.
,
25
, pp.
313
337
. 10.1146/annurev.energy.25.1.313
200.
Stahel
,
W. R.
,
1982
,
The Product Life Factor
.
An Inquiry into the Nature of Sustainable Societies: The Role of the Private Sector (Series: 1982 Mitchell Prize Papers)
,
NARC
.
201.
McDonough
,
W.
, and
Braungart
,
M.
,
2010
,
Cradle to Cradle: Remaking the Way We Make Things
,
North Point Press
.
202.
Hannon
,
B. M.
,
1973
,
System Energy and Recycling: A Study of the Beverage Industry
.
CAC document; 0360-1617 no. 23
.
203.
Gaustad
,
G.
,
Krystofik
,
M.
,
Bustamante
,
M.
, and
Badami
,
K.
,
2018
, “
Circular Economy Strategies for Mitigating Critical Material Supply Issues
,”
Resour. Conserv. Recycl.
,
135
, pp.
24
33
. 10.1016/j.resconrec.2017.08.002
204.
Alonso
,
E.
,
Sherman
,
A. M.
,
Wallington
,
T. J.
,
Everson
,
M. P.
,
Field
,
F. R.
,
Roth
,
R.
, and
Kirchain
,
R. E.
,
2012
, “
Evaluating Rare Earth Element Availability: A Case With Revolutionary Demand From Clean Technologies
,”
Environ. Sci. Technol.
,
46
(
6
), pp.
3406
3414
. 10.1021/es203518d
205.
Nansai
,
K.
,
Nakajima
,
K.
,
Kagawa
,
S.
,
Kondo
,
Y.
,
Suh
,
S.
,
Shigetomi
,
Y.
, and
Oshita
,
Y.
,
2014
, “
Global Flows of Critical Metals Necessary for Low-Carbon Technologies: The Case of Neodymium, Cobalt, and Platinum
,”
Environ. Sci. Technol.
,
48
(
3
), pp.
1391
1400
. 10.1021/es4033452
206.
Domenech
,
T.
, and
Davies
,
M.
,
2011
, “
Structure and Morphology of Industrial Symbiosis Networks: The Case of Kalundborg
,”
Procedia-Soc. Behav. Sci.
,
10
, pp.
79
89
. 10.1016/j.sbspro.2011.01.011
207.
Li
,
X.
,
2017
,
Industrial Ecology and Industry Symbiosis for Environmental Sustainability: Definitions, Frameworks and Applications
,
Springer
,
New York
.
208.
Lombardi
,
D. R.
, and
Laybourn
,
P.
,
2012
, “
Redefining Industrial Symbiosis: Crossing Academic–Practitioner Boundaries
,”
J. Ind. Ecol.
,
16
(
1
), pp.
28
37
. 10.1111/j.1530-9290.2011.00444.x
209.
Prosman
,
E. J.
,
Wæhrens
,
B. V.
, and
Liotta
,
G.
,
2017
, “
Closing Global Material Loops: Initial Insights Into Firm-Level Challenges
,”
J. Ind. Ecol.
,
21
(
3
), pp.
641
650
. 10.1111/jiec.12535
210.
Jacobsen
,
N. B.
,
2006
, “
Industrial Symbiosis in Kalundborg, Denmark: A Quantitative Assessment of Economic and Environmental Aspects
,”
J. Ind. Ecol.
,
10
(
1–2
), pp.
239
255
. 10.1162/108819806775545411
211.
Valentine
,
S. V.
,
2016
, “
Kalundborg Symbiosis: Fostering Progressive Innovation in Environmental Networks
,”
J. Cleaner Prod.
,
118
, pp.
65
77
. 10.1016/j.jclepro.2016.01.061
212.
Explore the Kalundborg Symbiosis
, http://www.symbiosis.dk/en/, Accessed April 19, 2020.
213.
Ehrenfeld
,
J.
, and
Gertler
,
N.
,
1997
, “
Industrial Ecology in Practice: the Evolution of Interdependence at Kalundborg
,”
J. Ind. Ecol.
,
1
(
1
), pp.
67
79
. 10.1162/jiec.1997.1.1.67
214.
Heeres
,
R. R.
,
Vermeulen
,
W. J.
, and
De Walle
,
F. B.
,
2004
, “
Eco-Industrial Park Initiatives in the USA and the Netherlands: First Lessons
,”
J. Cleaner Prod.
,
12
(
8–10
), pp.
985
995
. 10.1016/j.jclepro.2004.02.014
215.
Fang
,
K.
,
Dong
,
L.
,
Ren
,
J.
,
Zhang
,
Q.
,
Han
,
L.
, and
Fu
,
H.
,
2017
, “
Carbon Footprints of Urban Transition: Tracking Circular Economy Promotions in Guiyang
,”
China. Ecol. Modell
,
365
, pp.
30
44
. 10.1016/j.ecolmodel.2017.09.024
216.
Information Synergy of Industrial Symbiosis
. http://uest.ntua.gr/conference2014/pdf/zhu.pdf, Accessed April 19, 2020.
217.
Ghali
,
M. R.
,
Frayret
,
J. M.
, and
Robert
,
J. M.
,
2016
, “
Green Social Networking: Concept and Potential Applications to Initiate Industrial Synergies
,”
J. Cleaner Prod.
,
115
, pp.
23
35
. 10.1016/j.jclepro.2015.12.028
218.
Trokanas
,
N.
,
Cecelja
,
F.
, and
Raafat
,
T.
,
2014
, “
Semantic Input/Output Matching for Waste Processing in Industrial Symbiosis
,”
Comput. Chem. Eng.
,
66
, pp.
259
268
. 10.1016/j.compchemeng.2014.02.010
219.
Cecelja
,
F.
,
Trokanas
,
N.
,
Raafat
,
T.
, and
Yu
,
M.
,
2015
, “
Semantic Algorithm for Industrial Symbiosis Network Synthesis
,”
Comput. Chem. Eng.
,
83
, pp.
248
266
. 10.1016/j.compchemeng.2015.04.031
220.
Layton
,
A.
,
Bras
,
B.
, and
Weissburg
,
M.
,
2016
, “
Designing Industrial Networks Using Ecological Food Web Metrics
,”
Environ. Sci. Technol.
,
50
(
20
), pp.
11243
11252
. 10.1021/acs.est.6b03066
221.
Mathur
,
N.
,
Singh
,
S.
, and
Sutherland
,
J. W.
,
2020
, “
Promoting a Circular Economy in the Solar Photovoltaic Industry Using Life Cycle Symbiosis
,”
Resour. Conserv. Recycl.
,
155
, p.
104649
. 10.1016/j.resconrec.2019.104649
222.
Dave
,
T.
, and
Layton
,
A.
,
2020
, “
Designing Ecologically-Inspired Robustness Into a Water Distribution Network
,”
J. Cleaner Prod.
,
254
, pp.
120057
. 10.1016/j.jclepro.2020.120057
223.
Mathur
,
N.
,
Deng
,
S.
,
Singh
,
S.
,
Yih
,
Y.
, and
Sutherland
,
J. W.
,
2019
, “
Evaluating the Environmental Benefits of Implementing Industrial Symbiosis to Used Electric Vehicle Batteries
,”
Procedia CIRP
,
80
, pp.
661
666
. 10.1016/j.procir.2019.01.074
224.
Hammond
,
G. P.
, and
Norman
,
J. B.
,
2014
, “
Heat Recovery Opportunities in UK Industry
,”
Appl. Energy
,
116
, pp.
387
397
. 10.1016/j.apenergy.2013.11.008
225.
McBrien
,
M.
,
Serrenho
,
A. C.
, and
Allwood
,
J. M.
,
2016
, “
Potential for Energy Savings by Heat Recovery in an Integrated Steel Supply Chain
,”
Appl. Therm. Eng.
,
103
, pp.
592
606
. 10.1016/j.applthermaleng.2016.04.099
226.
Ahmed
,
A.
,
Esmaeil
,
K. K.
,
Irfan
,
M. A.
, and
Al-Mufadi
,
F. A.
,
2018
, “
Design Methodology of Organic Rankine Cycle for Waste Heat Recovery in Cement Plants
,”
Appl. Therm. Eng.
,
129
, pp.
421
430
. 10.1016/j.applthermaleng.2017.10.019
227.
Castelli
,
A. F.
,
Elsido
,
C.
,
Scaccabarozzi
,
R.
,
Nord
,
L. O.
, and
Martelli
,
E.
,
2019
,
Optimization of Organic Rankine Cycles for Waste Heat Recovery From Aluminum Production Plants
.
228.
Ruohonen
,
P.
,
Hippinen
,
I.
,
Tuomaala
,
M.
, and
Ahtila
,
P.
,
2010
, “
Analysis of Alternative Secondary Heat Uses to Improve Energy Efficiency—Case: A Finnish Mechanical Pulp and Paper Mill
,”
Resour. Conserv. Recycl.
,
54
(
5
), pp.
326
335
. 10.1016/j.resconrec.2009.07.002
229.
Packard
,
V.
, and
McKibben
,
B.
,
1963
,
The Waste Makers
,
Penguin Books
,
Harmondsworth
.
230.
Guiltinan
,
J.
,
2009
, “
Creative Destruction and Destructive Creations: Environmental Ethics and Planned Obsolescence
,”
J. Business Ethics
,
89
(
1
), pp.
19
28
. 10.1007/s10551-008-9907-9
231.
Woodward
,
D. G.
,
1997
, “
Life Cycle Costing—Theory, Information Acquisition and Application
,”
Int. J. Proj. Manage.
,
15
(
6
), pp.
335
344
. 10.1016/S0263-7863(96)00089-0
232.
Van Nes
,
N.
, and
Cramer
,
J.
,
2006
, “
Product Lifetime Optimization: A Challenging Strategy Towards More Sustainable Consumption Patterns
,”
J. Cleaner Prod.
,
14
(
15–16
), pp.
1307
1318
. 10.1016/j.jclepro.2005.04.006
233.
Thomsen
,
A.
, and
Van der Flier
,
K.
,
2011
, “
Understanding Obsolescence: A Conceptual Model for Buildings
,”
Build. Res. Inf.
,
39
(
4
), pp.
352
362
. 10.1080/09613218.2011.576328
234.
Cooper
,
D. R.
,
Skelton
,
A. C.
,
Moynihan
,
M. C.
, and
Allwood
,
J. M.
,
2014
, “
Component Level Strategies for Exploiting the Lifespan of Steel in Products
,”
Resour. Conserv. Recycl.
,
84
, pp.
24
34
. 10.1016/j.resconrec.2013.11.014
235.
Hruska
,
J.
,
2016
, “
Google’s Modular Smartphone, Project Ara, Is Officially Dead
,”
Extreme Tech
, https://www.extremetech.com/mobile/234967-googles-modular-smartphone-project-ara-isofficially-dead
236.
Cooper
,
D. R.
, and
Allwood
,
J. M.
,
2012
, “
Reusing Steel and Aluminum Components at End of Product Life
,”
Environ. Sci. Technol.
,
46
(
18
), pp.
10334
10340
. 10.1021/es301093a
237.
Gorgolewski
,
M.
,
Straka
,
V.
,
Edmonds
,
J.
, and
Sergio
,
C.
,
2006
,
Facilitating Greater Reuse and Recycling of Structural Steel in the Construction and Demolition Process
.
Ryerson University. Canadian Institute of Steel Construction
.
238.
Tilwankar
,
A. K.
,
Mahindrakar
,
A. B.
, and
Asolekar
,
S. R.
,
2008, September
, “
Steel Recycling Resulting From Ship Dismantling in India: Implications for Green House gas Emissions
,”
Proceedings of Second International Conference on “Dismantling of Obsolete Vessels”, During
, pp.
15
16
.
239.
Cooper
,
D. R.
, and
Gutowski
,
T. G.
,
2017
, “
The Environmental Impacts of Reuse: A Review
,”
J. Ind. Ecol.
,
21
(
1
), pp.
38
56
. 10.1111/jiec.12388
240.
Skerlos
,
S. J.
,
Morrow
,
W. R.
,
Chan
,
K. Y.
,
Zhao
,
F.
,
Hula
,
A.
,
Seliger
,
G.
,
Basdere
,
B.
, and
Prasitnarit
,
A.
,
2003, May
, “
Economic and Environmental Characteristics of Global Cellular Telephone Remanufacturing
,”
IEEE International Symposium on Electronics and the Environment, 2003
,
IEEE
, pp.
99
104
.
241.
Sutherland
,
J. W.
,
Adler
,
D. P.
,
Haapala
,
K. R.
, and
Kumar
,
V.
,
2008
, “
A Comparison of Manufacturing and Remanufacturing Energy Intensities with Application to Diesel Engine Production
,”
CIRP Ann.
,
57
(
1
), pp.
5
8
. 10.1016/j.cirp.2008.03.004
242.
Ferrer
,
G.
,
1997
, “
The Economics of Tire Remanufacturing
,”
Resour. Conserv. Recycl.
,
19
(
4
), pp.
221
255
. 10.1016/S0921-3449(96)01181-0
243.
King
,
A.
,
Miemczyk
,
J.
, and
Bufton
,
D.
,
2006
, “Photocopier Remanufacturing at Xerox UK A Description of the Process and Consideration of Future Policy Issues,”
Innovation in Life Cycle Engineering and Sustainable Development
,
Springer
,
Dordrecht
, pp.
173
186
.
244.
Ortegon
,
K.
,
Nies
,
L. F.
, and
Sutherland
,
J. W.
,
2014
, “
The Impact of Maintenance and Technology Change on Remanufacturing as a Recovery Alternative for Used Wind Turbines
,”
Procedia CIRP
,
15
, pp.
182
188
. 10.1016/j.procir.2014.06.042
245.
Steinhilper
,
R.
,
2011
, “
Remanufacturing: Today and Tomorrow
,”
International Conference on Remanufacturing
.
246.
Bollinger
,
L.
,
Frenkel
,
R.
,
Grand
,
R.
,
Kutta
,
R.
,
Lund
,
R.
, and
Stanovsky
,
C.
,
1981
,
Remanufacturing Survey Findings
,
Center for Policy Alternatives
,
MIT, Cambridge, MA
.
247.
Adler
,
D. P.
,
Ludewig
,
P. A.
,
Kumar
,
V.
, and
Sutherland
,
J. W.
,
2007, October
, “
Comparing Energy and Other Measures of Environmental Performance in the Original Manufacturing and Remanufacturing of Engine Components
,”
Proceedings of ASME 2007 International Manufacturing Science and Engineering Conference
,
American Society of Mechanical Engineers Digital Collection
,
New York
, pp.
851
860
.
248.
Hauser
,
W.
, and
Lund
,
R. T.
,
2003
,
The Remanufacturing Industry: Anatomy of a Giant
,
Department of Manufacturing Engineering, Boston University
,
Boston, MA
.
249.
Skelton
,
A. C.
, and
Allwood
,
J. M.
,
2013
, “
Product Life Trade-Offs: What if Products Fail Early?
,”
Environ. Sci. Technol.
,
47
(
3
), pp.
1719
1728
. 10.1021/es3034022
250.
Gutowski
,
T. G.
,
Sahni
,
S.
,
Boustani
,
A.
, and
Graves
,
S. C.
,
2011
, “
Remanufacturing and Energy Savings
,”
Environ. Sci. Technol.
,
45
(
10
), pp.
4540
4547
. 10.1021/es102598b
251.
Dahmus
,
J. B.
, and
Gutowski
,
T. G.
,
2007
, “
What Gets Recycled: An Information Theory Based Model for Product Recycling
,”
Environ. Sci. Technol.
,
41
(
21
), pp.
7543
7550
. 10.1021/es062254b
252.
Zhu
,
Y.
, and
Cooper
,
D. R.
,
2019
, “
An Optimal Reverse Material Supply Chain for US Aluminum Scrap
,”
Procedia CIRP
,
80
, pp.
677
682
. 10.1016/j.procir.2019.01.065
253.
Hatayama
,
H.
,
Daigo
,
I.
,
Matsuno
,
Y.
, and
Adachi
,
Y.
,
2012
, “
Evolution of Aluminum Recycling Initiated by the Introduction of Next-Generation Vehicles and Scrap Sorting Technology
,”
Resour. Conserv. Recycl.
,
66
, pp.
8
14
. 10.1016/j.resconrec.2012.06.006
254.
Modaresi
,
R.
, and
Müller
,
D. B.
,
2012
, “
The Role of Automobiles for the Future of Aluminum Recycling
,”
Environ. Sci. Technol.
,
46
(
16
), pp.
8587
8594
. 10.1021/es300648w
255.
Daehn
,
K. E.
,
Cabrera Serrenho
,
A.
, and
Allwood
,
J. M.
,
2017
, “
How Will Copper Contamination Constrain Future Global Steel Recycling?
,”
Environ. Sci. Technol.
,
51
(
11
), pp.
6599
6606
. 10.1021/acs.est.7b00997
256.
Cooper
,
D.
,
Ryan
,
N.
,
Zhu
,
Y.
, and
Syndergaard
,
K.
,
2020
, “
The Potential for Material Independence and Circularity in the U.S. Steel Sector
,”
J. Ind. Ecol.
,
2020
, pp.
1
15
. 10.1111/jiec.12971
257.
Economics
,
M.
,
2018
,
The Circular Economy—A Powerful Force for Climate Mitigation
.
258.
Toyota
. “
Environmental Report 2018
,”
Toyota Motor Corporation
.
259.
Løvik
,
A. N.
,
Modaresi
,
R.
, and
Müller
,
D. B.
,
2014
, “
Long-Term Strategies for Increased Recycling of Automotive Aluminum and Its Alloying Elements
,”
Environ. Sci. Technol.
,
48
(
8
), pp.
4257
4265
. 10.1021/es405604g
260.
Gaustad
,
G.
,
Olivetti
,
E.
, and
Kirchain
,
R.
,
2012
, “
Improving Aluminum Recycling: A Survey of Sorting and Impurity Removal Technologies
,”
Resour. Conserv. Recycl.
,
58
, pp.
79
87
. 10.1016/j.resconrec.2011.10.010
261.
Daehn
,
K. E.
,
Serrenho
,
A. C.
, and
Allwood
,
J.
,
2019
, “
Finding the Most Efficient Way to Remove Residual Copper From Steel Scrap
,”
Metall. Mater. Trans. B
,
50
(
3
), pp.
1225
1240
. 10.1007/s11663-019-01537-9
262.
Cullen
,
J. M.
,
2017
, “
Circular Economy: Theoretical Benchmark or Perpetual Motion Machine?
,”
J. Ind. Ecol.
,
21
(
3
), pp.
483
486
. 10.1111/jiec.12599
263.
Raabe
,
D.
,
Tasan
,
C. C.
, and
Olivetti
,
E. A.
,
2019
,
Transformative Sustainability in Structural Metals
,
Accepted in Nature
.
264.
Bentzen
,
J.
,
2004
, “
Estimating the Rebound Effect in US Manufacturing Energy Consumption
,”
Energy Econ.
,
2691
(
1
), pp.
123
134
. 10.1016/S0140-9883(03)00047-1
You do not currently have access to this content.