Abstract

Previous studies show that the phase transition temperature of Ti6Al4V can be effectively reduced by electropulsing treatment, which may be related to the promotion effect of current on element diffusion. In order to verify the above conjecture, the diffusion experiments of the Ti6Al4V-pure titanium system under the action of electropulsing and heat treatment are carried out. The results show that the current can effectively improve the diffusion coefficients of aluminum and vanadium, and the promotion effect has no relationship with the direction of the current. Considering the inhomogeneity of the Joule heat distribution of the microscopic scale of the material, the hypothesis of “local hot spot” is proposed to explain the experimental phenomena. It is found that the hypothesis can make effective predictions of diffusion coefficients and explain the promotion effect of electropulsing on Ti6Al4V phase transition reasonably.

References

1.
Jiang
,
T. H.
,
Peng
,
L. F.
,
Yi
,
P. Y.
, and
Lai
,
X. M.
,
2016
, “
Flow Behavior and Plasticity of Ti-6Al-4V Under Different Electrically Assisted Treatments
,”
Mater. Res. Express
,
3
(
12
), p.
17
. 10.1088/2053-1591/3/12/126505
2.
Ding
,
R.
,
Guo
,
Z.
, and
Wilson
,
A.
,
2002
, “
Microstructural Evolution of a Ti-6Al-4V Alloy During Thermomechanical Processing
,”
Mater. Sci. Eng. A
,
327
(
2
), pp.
233
245
. 10.1016/S0921-5093(01)01531-3
3.
Xiao
,
J.
,
Li
,
D. S.
,
Li
,
X. Q.
, and
Deng
,
T. S.
,
2012
, “
Constitutive Modeling and Microstructure Change of Ti-6Al-4V During the Hot Tensile Deformation
,”
J. Alloys Compd.
,
541
, pp.
346
352
. 10.1016/j.jallcom.2012.07.048
4.
Kotkunde
,
N.
,
Krishnamurthy
,
H. N.
,
Puranik
,
P.
,
Gupta
,
A. K.
, and
Singh
,
S. K.
,
2014
, “
Microstructure Study and Constitutive Modeling of Ti-6Al-4V Alloy at Elevated Temperatures
,”
Mater. Des.
,
54
, pp.
96
103
. 10.1016/j.matdes.2013.08.006
5.
Liu
,
G.
,
Shah
,
S.
, and
Ozel
,
T.
,
2019
, “
Material Ductile Failure-Based Finite Element Simulations of Chip Serration in Orthogonal Cutting of Titanium Alloy Ti-6Al-4V
,”
ASME J. Manuf. Sci. Eng. Trans.
,
141
(
4
), p.
041017
. 10.1115/1.4042788
6.
Lin
,
Y. C.
, and
Chen
,
X. M.
,
2011
, “
A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working
,”
Mater. Des.
,
32
(
4
), pp.
1733
1759
. 10.1016/j.matdes.2010.11.048
7.
Karbasian
,
H.
, and
Tekkaya
,
A. E.
,
2010
, “
A Review on Hot Stamping
,”
J. Mater. Process. Technol.
,
210
(
15
), pp.
2103
2118
. 10.1016/j.jmatprotec.2010.07.019
8.
Salandro
,
W. A.
,
Jones
,
J. J.
,
Bunget
,
C.
,
Mears
,
L.
, and
Roth
,
J. T.
,
2014
,
Electrically Assisted Forming: Modeling and Control
,
Springer
.
9.
Jiang
,
Z.
,
Zeng
,
Q.
,
Anderoglu
,
O.
,
Maloy
,
S.
,
Odette
,
G. R.
,
Ehmann
,
K. F.
, and
Cao
,
J.
,
2019
, “
Characterization of 14YWT Oxide Dispersion Strengthened Structural Materials Under Electrically-Assisted Tension
,”
Mater. Sci. Eng. A
,
745
, pp.
484
494
. 10.1016/j.msea.2018.12.122
10.
Magargee
,
J.
,
Morestin
,
F.
, and
Cao
,
J.
,
2013
, “
Characterization of Flow Stress for Commercially Pure Titanium Subjected to Electrically Assisted Deformation
,”
ASME J. Eng. Mater. Technol. Trans.
,
135
(
4
), p.
10
. 10.1115/msec2013-1069
11.
Ruszkiewicz
,
B. J.
,
Grimm
,
T.
,
Ragai
,
I.
,
Mears
,
L.
, and
Roth
,
J. T.
,
2017
, “
A Review of Electrically-Assisted Manufacturing With Emphasis on Modeling and Understanding of the Electroplastic Effect
,”
ASME J. Manuf. Sci. Eng. Trans.
,
139
(
11
), p.
15
. 10.1115/1.4036716
12.
Jiang
,
T. H.
,
Peng
,
L. F.
,
Yi
,
P. Y.
, and
Lai
,
X. M.
,
2017
, “
Investigation of Deformation Behavior of SS304 and Pure Copper Subjected to Electrically Assisted Forming Process
,”
ASME J. Manuf. Sci. Eng. Trans.
,
139
(
1
), p.
12
. 10.1115/1.4033904
13.
Kim
,
M.-J.
,
Lee
,
K.
,
Oh
,
K. H.
,
Choi
,
I.-S.
,
Yu
,
H.-H.
,
Hong
,
S.-T.
, and
Han
,
H. N.
,
2014
, “
Electric Current-Induced Annealing During Uniaxial Tension of Aluminum Alloy
,”
Scr. Mater.
,
75
, pp.
58
61
. 10.1016/j.scriptamat.2013.11.019
14.
Ross
,
C. D.
,
Irvin
,
D. B.
, and
Roth
,
J. T.
,
2007
, “
Manufacturing Aspects Relating to the Effects of Direct Current on the Tensile Properties of Metals
,”
ASME J. Eng. Mater. Technol. Trans.
,
129
(
2
), pp.
342
347
. 10.1115/1.2712470
15.
Zhao
,
Y. X.
,
Peng
,
L. F.
, and
Lai
,
X. M.
,
2018
, “
Influence of the Electric Pulse on Springback During Stretch U-Bending of Ti6Al4V Titanium Alloy Sheets
,”
J. Mater. Process. Technol.
,
261
, pp.
12
23
. 10.1016/j.jmatprotec.2018.05.030
16.
Xie
,
H. Y.
,
Wang
,
Q.
,
Liu
,
K.
,
Peng
,
F.
,
Dong
,
X. H.
, and
Wang
,
J. F.
,
2015
, “
Investigation of Influence of Direct-Current Pulses on Springback During V-Bending of AZ31B Magnesium Alloy Sheet
,”
J. Mater. Process. Technol.
,
219
, pp.
321
327
. 10.1016/j.jmatprotec.2014.12.011
17.
Ruszkiewicz
,
B. J.
,
Scriva
,
C.
,
Reese
,
Z. C.
,
Nikhare
,
C. P.
,
Roth
,
J. T.
,
Ragal
,
I.
, and
ASME
,
2015
, “
Direct Electric Current Spot Treatment's Effect on Springback of 90 Degree Bent 2024-T3 Aluminum
,”
ASME 2015 International Manufacturing Science and Engineering Conference
,
Charlotte, NC
.
18.
Zhang
,
D.
,
To
,
S.
,
Zhu
,
Y.
,
Wang
,
H.
, and
Tang
,
G.
,
2012
, “
Dynamic Electropulsing Induced Phase Transformations and Their Effects on Single Point Diamond Turning of AZ91 Alloy
,”
J. Surf. Eng. Mater. Adv. Technol.
,
2
(
1
), pp.
16
21
. 10.4236/jsemat.2012.21003
19.
Jiang
,
Y. B.
,
Tang
,
G. Y.
,
Shek
,
C.
,
Zhu
,
Y. H.
,
Guan
,
L.
,
Wang
,
S. N.
, and
Xu
,
Z. H.
,
2009
, “
Improved Ductility of Aged Mg-9Al-1Zn Alloy Strip by Electropulsing Treatment
,”
J. Mater. Res.
,
24
(
5
), pp.
1810
1814
. 10.1557/jmr.2009.0197
20.
Ao
,
D. W.
,
Chu
,
X. R.
,
Yang
,
Y.
,
Lin
,
S. X.
, and
Gao
,
J.
,
2018
, “
Effect of Electropulsing Treatment on Microstructure and Mechanical Behavior of Ti-6Al-4V Alloy Sheet Under Argon Gas Protection
,”
Vacuum
,
148
, pp.
230
238
. 10.1016/j.vacuum.2017.11.017
21.
Zhao
,
Z.
,
To
,
S.
,
Sun
,
Z.
,
Ji
,
R.
, and
Yu
,
K. M.
,
2019
, “
Microstructural Effects of Ti6Al4V Alloys Modified by Electropulsing Treatment on Ultraprecision Diamond Turning
,”
J. Manuf. Processes
,
39
, pp.
58
68
. 10.1016/j.jmapro.2019.02.005
22.
Kopec
,
M.
,
Wang
,
K. H.
,
Politis
,
D. J.
,
Wang
,
Y. Q.
,
Wang
,
L. L.
, and
Lin
,
J. G.
,
2018
, “
Formability and Microstructure Evolution Mechanisms of Ti6Al4V Alloy During a Novel Hot Stamping Process
,”
Mater. Sci. Eng. A
,
719
, pp.
72
81
. 10.1016/j.msea.2018.02.038
23.
Tan
,
P.
,
Shen
,
F.
,
Li
,
B.
, and
Zhou
,
K.
,
2019
, “
A Thermo-Metallurgical-Mechanical Model for Selective Laser Melting of Ti6Al4V
,”
Mater. Des.
,
168
, p.
107642
. 10.1016/j.matdes.2019.107642
24.
Steedman
,
G.
, and
Corbin
,
S. F.
,
2015
, “
Determining Sintering Mechanisms and Rate of in situ Homogenisation During Master Alloy Sintering of Ti6Al4V
,”
Powder Metall.
,
58
(
1
), pp.
67
80
. 10.1179/1743290114Y.0000000110
25.
Garay
,
J. E.
,
Anselmi-Tamburini
,
U.
, and
Munir
,
Z. A.
,
2003
, “
Enhanced Growth of Intermetallic Phases in the Ni-Ti System by Current Effects
,”
Acta Mater.
,
51
(
15
), pp.
4487
4495
. 10.1016/S1359-6454(03)00284-2
26.
Gao
,
X. F.
,
Chen
,
S. P.
,
Dong
,
F.
,
Hu
,
L. F.
,
Yang
,
R. Y.
,
Wang
,
W. X.
, and
Munir
,
Z. A.
,
2017
, “
Diffusion Bonding of Ti/Ni Under the Influence of an Electric Current: Mechanism and Bond Structure
,”
J. Mater. Sci.
,
52
(
6
), pp.
3535
3544
. 10.1007/s10853-016-0648-3
27.
Pan
,
R.
,
Wang
,
Q.
,
Sun
,
D. L.
, and
He
,
P.
,
2015
, “
Effects of Electric Field on Interfacial Microstructure and Shear Strength of Diffusion Bonded Alpha-Al2O3/Ti Joints
,”
J. Eur. Ceram. Soc.
,
35
(
1
), pp.
219
226
. 10.1016/j.jeurceramsoc.2014.07.025
28.
Zhang
,
C.
,
Li
,
H.
, and
Li
,
M. Q.
,
2018
, “
Modeling of Solid-State Hot Press Bonding and Its Application to the Fabrication of Titanium Alloy Joints
,”
ASME J. Manuf. Sci. Eng. Trans.
,
140
(
8
), p.
081007
. 10.1115/1.4040262
29.
Cortell Bataller
,
R.
,
1991
, “
Numerical Analysis of Fick’s Diffusion Phenomena
,”
Anales Fis, Ser B (Aplicaciones, Metodos e Instrumentos)
,
87
(
1
), pp.
181
186
.
30.
Mehrer
,
H.
,
1970
, “
Diffusion in Solid Metals and Alloys
,”
Defect Diffus. Forum
,
4
(
7
), pp.
296
340
.
31.
Asoka-Kumar
,
P.
,
OBrien
,
K.
,
Lynn
,
K. G.
,
Simpson
,
P. J.
, and
Rodbell
,
K. P.
,
1996
, “
Detection of Current-Induced Vacancies in Thin Aluminum–Copper Lines Using Positrons
,”
Appl. Phys. Lett.
,
68
(
3
), pp.
406
408
. 10.1063/1.116700
32.
Wang
,
X.
,
Xu
,
J.
,
Shan
,
D.
,
Guo
,
B.
, and
Cao
,
J.
,
2016
, “
Modeling of Thermal and Mechanical Behavior of a Magnesium Alloy AZ31 During Electrically-Assisted Micro-Tension
,”
Int. J. Plast.
,
85
, pp.
230
257
. 10.1016/j.ijplas.2016.07.008
33.
Kino
,
T.
,
Endo
,
T.
, and
Kawata
,
S.
,
1974
, “
Deviations From Matthiessen’s Rule of the Electrical Resistivity of Dislocations in Aluminum
,”
J. Phys. Soc. Jpn.
,
36
(
3
), pp.
698
705
. 10.1143/JPSJ.36.698
34.
Ruszkiewicz
,
B. J.
,
Mears
,
L.
, and
Roth
,
J. T.
,
2018
, “
Investigation of Heterogeneous Joule Heating as the Explanation for the Transient Electroplastic Stress Drop in Pulsed Tension of 7075-T6 Aluminum
,”
ASME J. Manuf. Sci. Eng. Trans.
,
140
(
9
), p.
091014
. 10.1115/1.4040349
35.
Fan
,
R.
,
Magargee
,
J.
,
Hu
,
P.
, and
Cao
,
J.
,
2013
, “
Influence of Grain Size and Grain Boundaries on the Thermal and Mechanical Behavior of 70/30 Brass Under Electrically-Assisted Deformation
,”
Mater. Sci. Eng. A
,
574
, pp.
218
225
. 10.1016/j.msea.2013.02.066
36.
Salandro
,
W. A.
,
Jones
,
J. J.
,
Bunget
,
C.
,
Roth
,
J. T.
, and
Mears
,
L.
,
2015
,
Electrically Assisted Forming
,
Springer
,
New York
,
23
36
.
37.
Littlewood
,
P. D.
, and
Wilkinson
,
A. J.
,
2012
, “
Geometrically Necessary Dislocation Density Distributions in Cyclically Deformed Ti–6Al–4V
,”
Acta Mater.
,
60
(
15
), pp.
5516
5525
. 10.1016/j.actamat.2012.07.003
38.
Gierlotka
,
W.
,
Lothongkum
,
G.
,
Lohwongwatana
,
B.
, and
Puncreoburt
,
C.
,
2019
, “
Atomic Mobility in Titanium Grade 5 (Ti6Al4V)
,”
J. Min. Metall. Sect. B-Metall.
,
55
(
1
), pp.
65
77
. 10.2298/JMMB180620030G
39.
Huang
,
J.
,
Xu
,
Z.
,
Deng
,
Y.
, and
Peng
,
L.
,
2019
, “
Electropulsing-Induced α to β Phase Transformation of Ti–6Al–4V
,”
ASME J. Manuf. Sci. Eng.
,
141
(
11
), p.
111012
. 10.1115/1.4044835
40.
Liu
,
H.
,
Cao
,
J.
,
He
,
P.
, and
Feng
,
J. C.
,
2009
, “
Effect of Hydrogen on Diffusion Bonding of Commercially Pure Titanium and Hydrogenated Ti6Al4V Alloys
,”
Int. J. Hydrogen Energy
,
34
(
2
), pp.
1108
1113
. 10.1016/j.ijhydene.2008.10.071
You do not currently have access to this content.