Abstract

Chemical vapor deposition (CVD), which involves chemical reactions in gases for deposition on a heated surface, is an extensively used manufacturing technique for obtaining thin films of materials like silicon, graphene, silicon carbide, aluminum nitride, and gallium nitride (GaN). The process is driven by heat and mass transfer, fluid flow, and chemical reactions in the gases and at the surface. GaN is one of the most promising materials for manufacturing optical and electronic devices. However, the reliability and durability of the GaN-based devices depend on the crystalline quality of the thin films used. In this study, the epitaxial growth of GaN thin films on sapphire (Al2O3) wafers is carried out in a vertical rotating disk metalorganic chemical vapor deposition (MOCVD) system. Epitaxial growth refers to the process of growing a crystal of a particular orientation on the top of another crystal, with the orientation being determined by the underlying crystal. MOCVD reactors are CVD systems that use metalorganic compounds that consist of metal and organic ligands, leading to materials like GaAs, AlN, InN, and GaN. The quality of the thin films is largely determined by the choice of operating conditions such as the flowrate, surface temperature, and concentration of the metalorganic precursors that decompose due to heat in the reactor, react, and deposit the desired material on the surface of a wafer or a heated susceptor. In this experimental study, the crystalline quality and surface morphology of GaN thin films are evaluated using atomic force microscopy (AFM), X-ray diffraction (XRD), and Raman spectroscopy. The correlation between the crystalline quality of GaN thin films and the flowrate of the precursors is examined in detail on the basis of an evaluation of the dislocation density. The results indicate that a low concentration (V/III) ratio, where V and III refer to elements in the fifth and third groups of the periodic table, is beneficial for obtaining a high deposition rate since a low value of this ratio implies a high precursor concentration. However, it negatively affects the crystalline quality of the thin film. Similarly, high V/III ratios lead to low deposition rates and better crystalline quality, indicating the need to optimize the process.

References

1.
Ponce
,
F. A.
, and
Bour
,
D. P.
,
1997/03/27
, “
Nitride-Based Semiconductors for Blue and Green Light-Emitting Devices
,”
Nature
,
386
(
6623
), pp.
351
359
.
2.
Wang
,
W.
,
Yang
,
H.
, and
Li
,
G.
,
2013
, “
Growth and Characterization of Gan-Based LED Wafers on La0.3Sr1.7AlTaO6 Substrates
,”
J. Mater. Chem. C
,
1
(
26
), pp.
4070
4077
.
3.
Hitchman
,
M. L.
, and
Jones
,
A. C.
,
2009
, “
Chemical Vapour Deposition: Precursors, Processes and Applications
,”
R. Soc. Chem.
4.
Nakamura
,
S.
, and
Krames
,
M. R.
,
2013
, “
History of Gallium-Nitride-Based Light-Emitting Diodes for Illumination
,”
Proc. IEEE
,
101
(
10
), pp.
2211
2220
.
5.
Hiramatsu
,
K.
,
Itoh
,
S.
,
Amano
,
H.
,
Akasaki
,
I.
,
Kuwano
,
N.
,
Shiraishi
,
T.
, and
Oki
,
K.
,
1991
, “
Growth Mechanism of GaN Grown on Sapphire With A1N Buffer Layer by MOVPE
,”
J. Cryst. Growth
,
115
(
1–4
), pp.
628
633
.
6.
Huang
,
W. C.
,
Chu
,
C.-M.
,
Wong
,
Y.-Y.
,
Chen
,
K.-W.
,
Lin
,
Y.-K.
,
Wu
,
C.-H.
,
Lee
,
W.-I.
, and
Chang
,
E.-Y.
,
2016
, “
Investigations of GaN Growth on the Sapphire Substrate by MOCVD Method With Different AlN Buffer Deposition Temperatures
,”
Mater. Sci. Semicond. Process.
,
45
(
Supplement C
), pp.
1
8
.
7.
Mitrovic
,
B.
,
Gurary
,
A.
, and
Quinn
,
W.
,
2007
, “
Process Conditions Optimization for the Maximum Deposition Rate and Uniformity in Vertical Rotating Disc MOCVD Reactors Based on CFD Modeling
,”
J. Cryst. Growth
,
303
(
1
), pp.
323
329
.
8.
Fu
,
Y.
,
2000
,
Residual Stress in Gallium Nitride Films Grown on Silicon Substrates by Metalorganic Chemical Vapor Deposition
,
Ohio University
.
9.
Grabow
,
M. H.
, and
Gilmer
,
G. H.
,
1987
, “
Molecular Dynamics Studies of Semiconductor Thin Films and Interfaces
,”
MRS Online Proc. Libr. Arch.
,
94
.
10.
Kidd
,
P.
,
2009
,
XRD of Gallium Nitride and Related Compounds: Strain, Composition and Layer Thickness (Booklet)
,
The Analytical X-Ray Co
.
11.
Tian
,
P.
,
McKendry
,
J. D.
,
Gong
,
Z.
,
Zhang
,
S.
,
Watson
,
S.
,
Zhu
,
D.
,
Watson
,
I. M.
,
Gu
,
E.
,
Kelly
,
A. E.
,
Humphreys
,
C. J.
, and
Dawson
,
M. D.
,
2014
, “
Characteristics and Applications of Micro-Pixelated GaN-Based Light Emitting Diodes on Si Substrates
,”
J. Appl. Phys.
,
115
(
3
), p.
033112
.
12.
Taniyasu
,
Y.
, and
Kasu
,
M.
,
2010
, “
Improved Emission Efficiency of 210-nm Deep-Ultraviolet Aluminum Nitride Light-Emitting Diode
,”
NTT Tech. Rev.
,
8
(
8
), p.
5
.
13.
Dadgar
,
A.
,
Veit
,
P.
,
Schulze
,
F.
,
Bläsing
,
J.
,
Krtschil
,
A.
,
Witte
,
H.
,
Diez
,
A.
,
Hempel
,
T.
,
Christen
,
J.
,
Clos
,
R.
, and
Krost
,
A.
,
2007
, “
MOVPE Growth of GaN on Si—Substrates and Strain
,”
Thin Solid Films
,
515
(
10
), pp.
4356
4361
.
14.
Nakamura
,
S.
,
Senoh
,
M.
,
Iwasa
,
N.
,
Nagahama
,
S.
,
Yamada
,
T.
, and
Mukai
,
T.
,
1995
, “
Superbright Green InGaN Single-Quantum-Well-Structure Light-Emitting Diodes
,”
Jpn. J. Appl. Phys.
,
34
(
10B
), pp.
L1332
L1335
.
15.
Hemmingsson
,
C.
, and
Pozina
,
G.
,
2013
, “
Optimization of Low Temperature GaN Buffer Layers for Halide Vapor Phase Epitaxy Growth of Bulk GaN
,”
J. Cryst. Growth
,
366
(
Supplement C
), pp.
61
66
.
16.
Kappers
,
M. J.
,
Datta
,
R.
,
Oliver
,
R. A.
,
Rayment
,
F. D. G.
,
Vickers
,
M. E.
, and
Humphreys
,
C. J.
,
2006
, “
Threading Dislocation Reduction in (0001) GaN Thin Films Using SiNx Interlayers
,”
J. Cryst. Growth
,
300
(
1
), pp.
70
74
.
17.
Zhu
,
D.
,
Wallis
,
D. J.
, and
Humphreys
,
C. J.
,
2013
, “
Prospects of III-Nitride Optoelectronics Grown on Si
,”
Rep. Prog. Phys.
,
76
(
10
), p.
106501
.
18.
Meng
,
J.
, and
Jaluria
,
Y.
,
2013
, “
Numerical Simulation of Gan Growth in a Metalorganic Chemical Vapor Deposition Process
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061013
.
19.
Jumaah
,
O.
, and
Jaluria
,
Y.
,
2019
, “
The Effect of Carrier Gas and Reactor Pressure on Gallium Nitride Growth in MOCVD Manufacturing Process
,”
ASME J. Heat Transfer
,
141
(
8
), p.
082101
.
20.
Wong
,
S.
, and
Jaluria
,
Y.
,
2020
, “
Numerical and Experimental Study on the Fabrication of GaN Films by Chemical Vapor Deposition
,”
ASME J. Manuf. Sci. Eng.
,
142
, p.
011001
.
21.
Ali
,
M.
,
Romanov
,
A. E.
,
Suihkonen
,
S.
,
Svensk
,
O.
,
Sintonen
,
S.
,
Sopanen
,
M.
,
Lipsanen
,
H.
,
Nevedomsky
,
V. N.
,
Bert
,
N. A.
,
Odnoblyudov
,
M. A.
, and
Bougrov
,
V. E.
,
2012
, “
Analysis of Threading Dislocations in Void Shape Controlled GaN Re-Grown on Hexagonally Patterned Mask-Less GaN
,”
J. Cryst. Growth
,
344
(
1
), pp.
59
64
.
22.
Ehrentraut
,
D.
,
Meissner
,
E.
, and
Bockowski
,
M.
,
2010
,
Technology of Gallium Nitride Crystal Growth
, Vol.
133
,
Springer Science & Business Media
.
23.
Yang
,
F. H.
,
2014
, “Modern Metal-Organic Chemical Vapor Deposition (MOCVD) Reactors and Growing Nitride-Based Materials,”
Nitride Semiconductor Light-Emitting Diodes (LEDs): Materials. Technologies and Applications
,
J. J.
Huang
,
H.
Kuo
, and
S.
Shen
, eds.,
Woodhead Publishing
Cambridge, UK
, pp.
27
65
.
24.
Li
,
S.
,
Su
,
J.
,
Fan
,
G.
,
Zhang
,
Y.
,
Zheng
,
S.
,
Sun
,
H.
, and
Cao
,
J.
,
2008
, “
Influence of Growth Rate in the Early Stage of High Temperature GaN Layer Growth on Quality of GaN Films
,”
J. Cryst. Growth
,
310
(
16
), pp.
3722
3725
.
25.
Tarsa
,
E. J.
,
Heying
,
B.
,
Wu
,
X. H.
,
Fini
,
P.
,
DenBaars
,
S. P.
, and
Speck
,
J. S.
,
1997
, “
Homoepitaxial Growth of GaN Under Ga-Stable and N-Stable Conditions by Plasma-Assisted Molecular Beam Epitaxy
,”
J. Appl. Phys.
,
82
(
11
), pp.
5472
5479
.
26.
Fewster
,
P. F.
,
2015
, “
X-Ray Scattering From Semiconductors and Other Materials
,”
World Sci.
27.
Kim
,
D. J.
,
Moon
,
Y. T.
,
Ahn
,
K. S.
, and
Park
,
S. J.
,
2000
, “
In Situ Normal Incidence Reflectance Study on the Effect of Growth Rate of Nucleation Layer on GaN by Metalorganic Chemical Vapor Deposition
,”
J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom.
,
18
(
1
), pp.
140
143
.
28.
Suresh
,
S.
,
Lourdudoss
,
S.
,
Landgren
,
G.
, and
Baskar
,
K.
,
2010
, “
Studies on the Effect of Ammonia Flow Rate Induced Defects in Gallium Nitride Grown by MOCVD
,”
J. Cryst. Growth
,
312
(
21
), pp.
3151
3155
.
29.
Heying
,
B.
,
Wu
,
X. H.
,
Keller
,
S.
,
Li
,
Y.
,
Kapolnek
,
D.
,
Keller
,
B. P.
,
DenBaars
,
S. P.
, and
Speck
,
J. S.
,
1996
, “
Role of Threading Dislocation Structure on the X-ray Diffraction Peak Widths in Epitaxial GaN Films
,”
Appl. Phys. Lett.
,
68
(
5
), pp.
643
645
.
30.
Xi
,
H. Z.
,
Man
,
B. Y.
,
Chen
,
C. S.
,
Liu
,
M.
,
Wei
,
J.
, and
Yang
,
S. Y.
,
2009
, “
Effects of Annealing Temperature on Amorphous GaN Films Formed on Si(1 1 1) by Pulsed Laser Deposition
,”
Semicond. Sci. Technol.
,
24
(
8
), p.
085024
.
31.
Chierchia
,
R.
,
Böttcher
,
T.
,
Heinke
,
H.
,
Einfeldt
,
S.
,
Figge
,
S.
, and
Hommel
,
D.
,
2003
, “
Microstructure of Heteroepitaxial GaN Revealed by X-Ray Diffraction
,”
J. Appl. Phys.
,
93
(
11
), pp.
8918
8925
.
32.
Harima
,
H.
,
2002
, “
Properties of GaN and Related Compounds Studied by Means of Raman Scattering
,”
J. Phys. Condens. Matter
,
14
(
38
), pp.
R967
R993
.
33.
Zhang
,
H.
,
Shao
,
Y.
,
Zhang
,
L.
,
Hao
,
X.
,
Wu
,
Y.
,
Liu
,
X.
,
Dai
,
Y.
, and
Tian
,
Y.
,
2012
, “
Growth of High Quality GaN on a Novel Designed Bonding-Thinned Template by HVPE
,”
CrystEngComm
,
14
(
14
), pp.
4777
4780
.
34.
Liu
,
J.
,
Liang
,
H.
,
Liu
,
Y.
,
Xia
,
X.
,
Huang
,
H.
,
Tao
,
P.
,
Sandhu
,
Q. A.
,
Shen
,
R.
,
Luo
,
Y.
, and
Du
,
G.
,
2017
, “
Strain and Microstructures of GaN Epilayers With Thick InGaN Interlayer Grown by MOCVD
,”
Mater. Sci. Semicond. Process.
,
60
, pp.
66
70
.
35.
Haboeck
,
U.
,
Siegle
,
H.
,
Hoffmann
,
A.
, and
Thomsen
,
C.
,
2003
, “
Lattice Dynamics in GaN and AlN Probed With First- and Second-Order Raman Spectroscopy
,”
Phys. Status Solidi C
,
0
(
6
), pp.
1710
1731
.
You do not currently have access to this content.