Abstract

Quality assurance techniques are increasingly demanded in additive manufacturing. Going beyond most of the existing research that focuses on the melt pool temperature monitoring, we develop a new method that monitors the in situ optical emission spectra signals. Optical emission spectra signals have been showing a potential capability of detecting microscopic pores. The concept is to extract features from the optical emission spectra via deep auto-encoders and then cluster the features into two quality groups to consider both unlabeled and labeled samples in a semi-supervised manner. The method is integrated with multitask learning to make it adaptable for the samples collected from multiple processes. Both a simulation example and a case study are performed to demonstrate the effectiveness of the proposed method.

References

1.
Craeghs
,
T.
,
Clijsters
,
S.
,
Kruth
,
J.-P.
,
Bechmann
,
F.
, and
Ebert
,
M.-C.
,
2012
, “
Detection of Process Failures in Layerwise Laser Melting With Optical Process Monitoring
,”
Phys. Procedia
,
39
, pp.
753
759
.
2.
Mahmoudi
,
M.
,
Ezzat
,
A. A.
, and
Elwany
,
A.
,
2019
, “
Layerwise Anomaly Detection in Laser Powder-Bed Fusion Metal Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
141
(
3
), p.
031002
.
3.
Guo
,
S.
,
Guo
,
W. G.
,
Abolhassani
,
A.
,
Kalamdani
,
R.
,
Puchala
,
S.
,
Januszczak
,
A.
, and
Jalluri
,
C.
,
2019
, “
Manufacturing Process Monitoring With Nonparametric Change-Point Detection in Automotive Industry
,”
ASME J. Manuf. Sci. Eng.
,
141
(
7
), p.
071013
.
4.
Jin
,
J.
,
Guo
,
H.
, and
Zhou
,
S.
,
2006
, “
Statistical Process Control Based Supervisory Generalized Predictive Control of Thin Film Deposition Processes
,”
ASME J. Manuf. Sci. Eng.
,
128
(
1
), pp.
315
325
.
5.
Zhao
,
D.
, and
Guo
,
W.
,
2020
, “
Shape and Performance Controlled Advanced Design for Additive Manufacturing: A Review of Slicing and Path Planning
,”
ASME J. Manuf. Sci. Eng.
,
142
(
1
), p.
010801
.
6.
McConaha
,
M.
, and
Anand
,
S.
,
2020
, “
Additive Manufacturing Distortion Compensation Based on Scan Data of Built Geometry
,”
ASME J. Manuf. Sci. Eng.
,
142
(
6
), p.
061001
.
7.
Francis
,
J.
,
Sabbaghi
,
A.
,
Ravi Shankar
,
M.
,
Ghasri-Khouzani
,
M.
, and
Bian
,
L.
,
2020
, “
Efficient Distortion Prediction of Additively Manufactured Parts Using Bayesian Model Transfer Between Material Systems
,”
ASME J. Manuf. Sci. Eng.
,
142
(
5
), p.
051001
.
8.
Grasso
,
M.
, and
Colosimo
,
B. M.
,
2017
, “
Process Defects and In Situ Monitoring Methods in Metal Powder Bed Fusion: A Review
,”
Meas. Sci. Technol.
,
28
(
4
), p.
044005
.
9.
Everton
,
S. K.
,
Hirsch
,
M.
,
Stravroulakis
,
P.
,
Leach
,
R. K.
, and
Clare
,
A. T.
,
2016
, “
Review of In-Situ Process Monitoring and In-Situ Metrology for Metal Additive Manufacturing
,”
Mater. Des.
,
95
, pp.
431
445
.
10.
Mazumder
,
J.
,
2015
, “
Design for Metallic Additive Manufacturing Machine With Capability for “Certify as You Build
,”
Procedia CIRP
,
36
, pp.
187
192
.
11.
Mazumder
,
J.
,
Dasgupta
,
A. K.
, and
Vasilyev
,
M.
,
2012
, “Optical Sensor for Quality Monitoring of a Welding Process,” Apr. 24, US Patent 8,164,022.
12.
Hu
,
D.
, and
Kovacevic
,
R.
,
2003
, “
Modelling and Measuring the Thermal Behaviour of the Molten Pool in Closed-Loop Controlled Laser-Based Additive Manufacturing
,”
Proc. Inst. Mech. Eng. B
,
217
(
4
), pp.
441
452
.
13.
Kriczky
,
D. A.
,
Irwin
,
J.
,
Reutzel
,
E. W.
,
Michaleris
,
P.
,
Nassar
,
A. R.
, and
Craig
,
J.
,
2015
, “
3d Spatial Reconstruction of Thermal Characteristics in Directed Energy Deposition Through Optical Thermal Imaging
,”
J. Mater. Process. Technol.
,
221
(
6
), pp.
172
186
.
14.
Furumoto
,
T.
,
Ueda
,
T.
,
Alkahari
,
M. R.
, and
Hosokawa
,
A.
,
2013
, “
Investigation of Laser Consolidation Process for Metal Powder by Two-Color Pyrometer and High-Speed Video Camera
,”
CIRP Ann.
,
62
(
1
), pp.
223
226
.
15.
Hu
,
D.
, and
Kovacevic
,
R.
,
2003
, “
Sensing, Modeling and Control for Laser-Based Additive Manufacturing
,”
Int. J. Mach. Tools Manuf.
,
43
(
1
), pp.
51
60
.
16.
Wang
,
Y.
, and
Shi
,
J.
,
2020
, “
Effect of Post Heat Treatment on the Microstructure and Tensile Properties of Nano Tic Particulate Reinforced Inconel 718 by Selective Laser Melting
,”
ASME J. Manuf. Sci. Eng.
,
142
(
5
), p.
051004
.
17.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2017
, “
Uncertainty Quantification and Management in Additive Manufacturing: Current Status, Needs, and Opportunities
,”
Int. J. Adv. Manuf. Technol.
,
93
(
5–8
), pp.
2855
2874
.
18.
Moylan
,
S.
,
Whitenton
,
E.
,
Lane
,
B.
, and
Slotwinski
,
J.
,
2014
, “
Infrared Thermography for Laser-Based Powder Bed Fusion Additive Manufacturing Processes
,” AIP Conference Proceedings, Vol.
1581
,
American Institute of Physics
, pp.
1191
1196
.
19.
Imani
,
F.
,
Chen
,
R.
,
Diewald
,
E.
,
Reutzel
,
E.
, and
Yang
,
H.
,
2019
, “
Deep Learning of Variant Geometry in Layerwise Imaging Profiles for Additive Manufacturing Quality Control
,”
ASME J. Manuf. Sci. Eng.
,
141
(
11
), p.
111001
.
20.
Reza Yavari
,
M.
,
Williams
,
R. J.
,
Cole
,
K. D.
,
Hooper
,
P. A.
, and
Rao
,
P.
,
2020
, “
Thermal Modeling in Metal Additive Manufacturing Using Graph Theory: Experimental Validation With Laser Powder Bed Fusion Using In Situ Infrared Thermography Data
,”
ASME J. Manuf. Sci. Eng.
,
142
(
12
), p.
121005
.
21.
Song
,
L.
, and
Mazumder
,
J.
,
2011
, “
Real Time Cr Measurement Using Optical Emission Spectroscopy During Direct Metal Deposition Process
,”
IEEE Sens. J.
,
12
(
5
), pp.
958
964
.
22.
Wang
,
S.
,
Wang
,
Y.
,
Liu
,
C.
, and
Mazumder
,
J.
,
2020
, “
In-Situ Monitoring on Micro-Hardness of Laser Molten Zone on Aisi4140 Steel by Spectral Analysis
,”
Sci. Rep.
,
10
(
1
), pp.
1
12
.
23.
Mazumder
,
J.
,
Song
,
L.
, and
Wang
,
C.
,
2017
, “In-Situ Identification and Control of Microstructures Produced by Phase Transformation of a Material,” Sept. 5, US Patent 9,752,988.
24.
Mazumder
,
J.
, and
Song
,
L.
,
2018
, “Smart Additive Manufacturing System (SAMS),” May 29, US Patent 9,981,341.
25.
Lough
,
C. S.
,
Escano
,
L. I.
,
Qu
,
M.
,
Smith
,
C. C.
,
Landers
,
R. G.
,
Bristow
,
D. A.
,
Chen
,
L.
, and
Kinzel
,
E. C.
,
2020
, “
In-Situ Optical Emission Spectroscopy of Selective Laser Melting
,”
J. Manuf. Processes
,
53
, pp.
336
341
.
26.
Lednev
,
V. N.
,
Sdvizhenskii
,
P. A.
,
Asyutin
,
R. D.
,
Tretyakov
,
R. S.
,
Grishin
,
M. Y.
,
Stavertiy
,
A. Y.
,
Fedorov
,
A. N.
, and
Pershin
,
S. M.
,
2019
, “
In Situ Elemental Analysis and Failures Detection During Additive Manufacturing Process Utilizing Laser Induced Breakdown Spectroscopy
,”
Opt. Express
,
27
(
4
), pp.
4612
4628
.
27.
Dunbar
,
A. J.
, and
Nassar
,
A. R.
,
2018
, “
Assessment of Optical Emission Analysis for In-Process Monitoring of Powder Bed Fusion Additive Manufacturing
,”
Virtual Phys. Prototyping
,
13
(
1
), pp.
14
19
.
28.
Montazeri
,
M.
,
Nassar
,
A. R.
,
Dunbar
,
A. J.
, and
Rao
,
P.
,
2020
, “
In-Process Monitoring of Porosity in Additive Manufacturing Using Optical Emission Spectroscopy
,”
IISE Trans.
,
52
(
5
), pp.
500
515
.
29.
Chen
,
S.
,
Gu
,
R.
,
Liu
,
Q.
,
Wang
,
W.
, and
Wei
,
X.
,
2020
, “
Experimental and Numerical Investigation on Strengthening Behavior of 7075 Aluminum Alloy Sheets in Hot Forming–Quenching Integrated Process
,”
ASME J. Manuf. Sci. Eng.
,
142
(
6
), p.
061005
.
30.
Choi
,
J.
,
Mazumder
,
J.
, and
Rice
,
A.
,
2020
, “Innovative Additive Manufacturing Process for Successful Production of 7000 Series Aluminum Alloy Components Using Smart Optical Monitoring System,” Technical Report, SAE Technical Paper, Warrendale, PA, Report No. 2020-01-1300.
31.
Montgomery
,
D. C.
,
2007
,
Introduction to Statistical Quality Control
,
John Wiley & Sons
,
Hoboken, NJ
.
32.
Luan
,
H.
, and
Huang
,
Q.
,
2016
, “
Prescriptive Modeling and Compensation of In-Plane Shape Deformation for 3-d Printed Freeform Products
,”
IEEE Trans. Autom. Sci. Eng.
,
14
(
1
), pp.
73
82
.
33.
Guo
,
W. G.
,
Jin
,
J. J.
, and
Jack Hu
,
S.
,
2019
, “
Profile Monitoring and Fault Diagnosis Via Sensor Fusion for Ultrasonic Welding
,”
ASME J. Manuf. Sci. Eng.
,
141
(
8
), p.
081001
.
34.
Shao
,
C.
,
Hyung Kim
,
T.
,
Jack Hu
,
S.
,
Abell
,
J. A.
, and
Patrick Spicer
,
J.
,
2016
, “
Tool Wear Monitoring for Ultrasonic Metal Welding of Lithium-ion Batteries
,”
ASME J. Manuf. Sci. Eng.
,
138
(
5
), p.
051005
.
35.
Guo
,
W.
,
Chen
,
R.
, and
Jin
,
J. J.
,
2015
, “
Online Eccentricity Monitoring of Seamless Tubes in Cross-roll Piercing Mill
,”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), p.
021007
.
36.
Jin
,
J.
, and
Shi
,
J.
,
2000
, “
Diagnostic Feature Extraction From Stamping Tonnage Signals Based on Design of Experiments
,”
ASME J. Manuf. Sci. Eng.
,
122
(
2
), pp.
360
369
.
37.
Bengio
,
Y.
,
Courville
,
A.
, and
Vincent
,
P.
,
2013
, “
Representation Learning: A Review and New Perspectives
,”
IEEE. Trans. Pattern Anal. Mach. Intell.
,
35
(
8
), pp.
1798
1828
.
38.
Arinez
,
J. F.
,
Chang
,
Q.
,
Gao
,
R. X.
,
Xu
,
C.
, and
Zhang
,
J.
,
2020
, “
Artificial Intelligence in Advanced Manufacturing: Current Status and Future Outlook
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p.
110804
.
39.
Xu
,
D.
, and
Tian
,
Y.
,
2015
, “
A Comprehensive Survey of Clustering Algorithms
,”
Ann. Data Sci.
,
2
(
2
), pp.
165
193
.
40.
Von Luxburg
,
U.
,
2007
, “
A Tutorial on Spectral Clustering
,”
Statist. Comput.
,
17
(
4
), pp.
395
416
.
41.
Li
,
X.
,
Zhao
,
X.
,
Chu
,
D.
, and
Zhou
,
Z.
,
2020
, “
An Autoencoder-Based Spectral Clustering Algorithm
,”
Soft Comput.
,
24
(
3
), pp.
1661
1671
.
42.
Xie
,
J.
,
Girshick
,
R.
, and
Farhadi
,
A.
,
2016
, “
Unsupervised Deep Embedding for Clustering Analysis
,”
International Conference on Machine Learning
,
New York
,
June 19–24
, pp.
478
487
.
43.
Caruana
,
R.
,
1997
, “
Multitask Learning
,”
Mach. Learn.
,
28
(
1
), pp.
41
75
.
44.
Shao
,
C.
,
Ren
,
J.
,
Wang
,
H.
,
Jin
,
J. J.
, and
Hu
,
S. J.
,
2017
, “
Improving Machined Surface Shape Prediction by Integrating Multi-task Learning With Cutting Force Variation Modeling
,”
ASME J. Manuf. Sci. Eng.
,
139
(
1
), p.
011014
. http://dx.doi.org/10.1115/1.4034592
45.
Obozinski
,
G.
,
Taskar
,
B.
, and
Jordan
,
M.
,
2006
, “
Multi-Task Feature Selection
,”
Statistics Department, UC Berkeley
,
Berkeley, CA
,
Technical Report, 2(2.2)
, p.
2
.
46.
Gong
,
P.
,
Ye
,
J.
, and
Zhang
,
C.
,
2012
, “
Robust Multi-Task Feature Learning
,”
Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
,
Beijing, China
,
Aug. 12–16
, pp.
895
903
.
47.
Han
,
L.
, and
Zhang
,
Y.
,
2015
, “
Learning Multi-Level Task Groups in Multi-Task Learning
,”
Twenty-Ninth AAAI Conference on Artificial Intelligence
,
Austin, TX
,
Jan. 25–30
.
48.
Zhang
,
Y.
, and
Yeung
,
D.-Y.
,
2012
, “A Convex Formulation for Learning Task Relationships in Multi-Task Learning,” arXiv preprint arXiv:1203.3536.
49.
Huang
,
J.
,
Nie
,
F.
, and
Huang
,
H.
,
2013
, “
Spectral Rotation Versus K-Means in Spectral Clustering
,”
Twenty-Seventh AAAI Conference on Artificial Intelligence
,
Bellevue, WA
,
July 14–18
.
50.
Nagi
,
J.
,
Ducatelle
,
F.
,
Di Caro
,
G. A.
,
Cireşan
,
D.
,
Meier
,
U.
,
Giusti
,
A.
,
Nagi
,
F.
,
Schmidhuber
,
J.
, and
Gambardella
,
L. M.
,
2011
, “
Max-Pooling Convolutional Neural Networks for Vision-Based Hand Gesture Recognition
,”
2011 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)
,
Kuala Lumpur, Malaysia
,
Nov. 16–18
,
IEEE
, pp.
342
347
.
51.
Zelnik-Manor
,
L.
, and
Perona
,
P.
,
2005
, “
Self-tuning Spectral Clustering
,”
Advances in Neural Information Processing Systems
,
Vancouver, Canada
,
Dec. 13–18
, pp.
1601
1608
.
52.
Pedregosa
,
F.
,
Varoquaux
,
G.
,
Gramfort
,
A.
,
Michel
,
V.
,
Thirion
,
B.
,
Grisel
,
O.
,
Blondel
,
M.
,
Prettenhofer
,
P.
,
Weiss
,
R.
,
Dubourg
,
V.
, and
Vanderplas
,
J.
,
2011
, “
Scikit-Learn: Machine Learning in Python
,”
J. Mach. Learn. Res.
,
12
, pp.
2825
2830
.
53.
Gordon
,
W. J.
, and
Riesenfeld
,
R. F.
,
1974
, “
B-Spline Curves and Surfaces
,”
Computer Aided Geometric Design
,
R. E.
Barnhill
and
R. F.
Riesenfeld
, eds.,
Elsevier
,
Cambridge, MA
, pp.
95
126
.
54.
Torrence
,
C.
, and
Compo
,
G. P.
,
1998
, “
A Practical Guide to Wavelet Analysis
,”
Bull. Am. Meteorol. Soc.
,
79
(
1
), pp.
61
78
.
55.
Lambert
,
M.
,
Engroff
,
A.
,
Dyer
,
M.
, and
Byer
,
B.
,
0000
,
Empirical Mode Decomposition
,
Rice University
,
Houston, TX
.
You do not currently have access to this content.