Abstract

As an important technology of adaptive machining, on-machine measurement (OMM) is always used to measure the shape of the to-be-cut surface. Due to the multi-source errors in an OMM system, the confidence of the measurement accuracy becomes particularly important before planning the next cutting procedure. OMM is implemented by multi-components involving machine tools, fixture, and on-machine probe. Each component introduces uncertainty of error into the measurement result. The positioning error, alignment error, and eccentricity error are investigated in terms of the expectation, uncertainty, and probability density function. By the kinematics of the components participated in the measurement, these errors are accumulated to affect the measurement results. Thus, the uncertainty of the final measurement result is determined by the accumulation of uncertainty of error sources. In order to evaluate the uncertainty of measurement error, an uncertainty propagation model involving positioning error of five-axis machine tools, alignment error of workpiece, and eccentricity error of the stylus tip is established in terms of the kinematic chain of OMM. Then, the uncertainty of the measurement result in vector form is obtained. Finally, the simulation and the experiment about the impeller are employed to validate the effectiveness and repeatability of the uncertainty propagation model for five-axis OMM.

References

1.
Li
,
W. L.
,
Wang
,
G.
,
Zhang
,
G.
,
Li
,
Q. D.
, and
Yin
,
Z. P.
,
2017
, “
Interference-Free Inspection Path Generation for Impeller Blades Using an On-Machine Probe
,”
IEEE/ASME Trans. Mechatron.
,
22
(
3
), pp.
1218
1226
.
2.
National Natural Science Foundation of China
,
2010
,
Development Strategy Report of Mechanical Engineering (2011–2020)
,
Science Press
,
Beijing
.
3.
ISO/TR 16015
,
2003
, “
Geometrical Product Specifications (GPS)-Systematic Errors and Contributions to Measurement Uncertainty of Length Measurement Due to Thermal Influences
,”
International Organization for Standardization
,
Geneva
, Technical Report, ISO/TR 16015:2003.
4.
Unai
,
M.
,
Alejandro
,
S.
,
Ibon
,
V.
,
Eneko
,
G. A.
,
Ion
,
B.
, and
Jose
,
A. Y. F.
,
2019
, “
Traceability of On-Machine Tool Measurement: Uncertainty Budget Assessment on Shop Floor Conditions
,”
Measurement
,
135
, pp.
180
188
.
5.
ISO 15530
,
2004
, “
Geometrical Product Specifications (GPS)-Coordinate Measuring Machines (CMM): Technique for Determining the Uncertainty of Measurement-Part 3: Use of Calibrated Workpieces or Standards
,”
International Organization for Standardization, Geneva
, Technical Report, ISO 15530-3:2004.
6.
Du
,
Z. C.
,
Wu
,
Z. Y.
,
Zhu
,
M. R.
, and
Yang
,
J. G.
,
2016
, “
Measurement Uncertainty on the Circular Features in Coordinate Measurement System Based on the Error Ellipse and Monte Carlo Methods
,”
Meas. Sci. Technol.
,
27
(
12
), p.
125016
.
7.
Bhattacharyya
,
A.
,
Schueller
,
J. K.
,
Mann
,
B. P.
,
Schmitz
,
T. L.
, and
Gomez
,
M.
,
2021
, “
Uncertainty Propagation Through an Empirical Model of Cutting Forces in End Milling
,”
ASME J. Manuf. Sci. Eng.
,
143
(
7
), p.
071002
.
8.
JCGM 100
,
2008
, “
Evaluation of Measurement Data-Guide to the Expression of Uncertainty in Measurement (GUM)
,” Metrology, JCGM 100:2008.
9.
Bureau International des Poids et Mesures
,
Commission Électrotechnique Internationale, Organisation International de Normalisation 1995 Guide to the Expression of Uncertainty in Measurement (GUM)
,
International Organisation for Standardization (ISO)
,
Geneva
.
10.
Kunzmann
,
H.
,
Trapet
,
E.
, and
Wäldele
,
F.
,
1993
, “
Concept for the Traceability of Measurements With Coordinate Measuring Machines
,”
Int. Prog. Precis. Eng.
, pp.
40
52
.
11.
Schwenke
,
H.
,
Siebert
,
B. R. L.
,
Wäldele
,
F.
, and
Kunzmann
,
H.
,
2013
, “
Assessment of Uncertainties in Dimensional Metrology by Monte Carlo Simulation: Proposal of a Modular and Visual Software
,”
CIRP Ann. Manuf. Technol.
,
49
(
1
), pp.
395
398
.
12.
Trenk
,
M.
,
Franke
,
M.
, and
Schwenke
,
H.
,
2004
, “
The ‘Virtual CMM’ a Software Tool for Uncertainty Evaluation-Practical Application in an Accredited Calibration Lab
,”
Proceedings of the ASPE Annual Meeting
,
Orlando, FL
,
Jan. 1
, pp.
1
6
.
13.
SłAdek
,
J.
, and
GąSka
,
A.
,
2012
, “
Evaluation of Coordinate Measurement Uncertainty With Use of Virtual Machine Model Based on Monte Carlo Method
,”
Measurement
,
45
(
6
), pp.
1564
1575
.
14.
Dong
,
C.
,
2005
, “
Uncertainty Analysis for Fiber Permeability Measurement
,”
ASME J. Manuf. Sci. Eng.
,
127
(
4
), pp.
907
911
.
15.
Bringmann
,
B.
, and
Knapp
,
W.
,
2009
, “
Machine Tool Calibration: Geometric Test Uncertainty Depends on Machine Tool Performance
,”
Precis. Eng.
,
33
(
4
), pp.
524
529
.
16.
Cao
,
Y. L.
,
Li
,
B.
,
Guan
,
J. Y.
, and
Yang
,
J. X.
,
2015
, “
A Point-Based Variation Propagation Model for Multi-Pass Machining Process
,”
J. Eng. Manuf.
,
229
(
7
), pp.
1164
1179
.
17.
Loose
,
J. P.
,
Zhou
,
S. Y.
, and
Ceglarek
,
D.
,
2007
, “
Kinematic Analysis of Dimensional Variation Propagation for Multistage Machining Processes With General Fixture Layouts
,”
IEEE Trans. Autom. Sci. Eng.
,
4
(
2
), pp.
141
152
.
18.
Andolfatto
,
L.
,
Mayer
,
J. R. R.
, and
Lavernhe
,
S.
,
2011
, “
Adaptive Monte Carlo Applied to Uncertainty Estimation in Five Axis Machine Tool Link Errors Identification With Thermal Disturbance
,”
Int. J. Mach. Tools Manuf.
,
51
(
7–8
), pp.
618
627
.
19.
Huynh
,
H. N.
, and
Altintas
,
Y.
,
2020
, “
Modeling the Dynamics of Five-Axis Machine Tool Using the Multibody Approach
,”
ASME J. Manuf. Sci. Eng.
,
143
(
2
), p.
021012
.
20.
Zhang
,
T.
, and
Shi
,
J.
,
2016
, “
Stream of Variation Modeling and Analysis for Compliant Composite Part Assembly-Part I: Single-Station Processes
,”
ASME J. Manuf. Sci. Eng.
,
138
(
12
), p.
121003
.
21.
Zhang
,
T.
, and
Shi
,
J.
,
2016
, “
Stream of Variation Modeling and Analysis for Compliant Composite Part Assembly-Part II: Multistation Processes
,”
ASME J. Manuf. Sci. Eng.
,
138
(
12
), p.
121004
.
22.
Wan
,
N.
,
Jiang
,
R. Z.
,
Zhao
,
H.
, and
Zhang
,
S. T.
,
2019
, “
An Inspection Path Optimization of Impeller for Balancing Efficiency and Accuracy
,”
Measurement
,
141
, pp.
472
485
.
23.
ISO 230
,
2014
, “
Test Code for Machine Tools-Part 2: Determination of Accuracy and Repeatability of Positioning of Numerically Controlled Axes
,”
International Organization for Standardization, Geneva
, Technical Report, ISO 230-2:2014.
24.
ISO 230
,
2015
, “
Test Code for Machine Tools-Part 7: Geometric Accuracy of Axes of Rotation
,”
International Organization for Standardization, Geneva
, Technical Report, ISO 230-7:2015.
25.
Hsu
,
Y. Y.
,
Chang
,
C. H.
, and
Tsai
,
Y. T.
,
2012
, “
Modeling and Identification for Rotary Geometric Errors of Five-Axis Machine Tools With R-Test Measurement
,”
ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Chicago, IL
,
Aug. 12–15
, pp.
567
575
.
26.
Jiang
,
Z. X.
,
Song
,
B.
,
Zhou
,
X. D.
,
Tang
,
X. Q.
, and
Zheng
,
S. Q.
,
2015
, “
On-Machine Measurement of Location Errors on Five-Axis Machine Tools by Machining Tests and a Laser Displacement Sensor
,”
Int. J. Mach. Tools Manuf.
,
95
, pp.
1
12
.
27.
Soichi
,
I.
,
Takeyuki
,
I.
, and
Tetsuya
,
M.
,
2012
, “
Calibration of Location Errors of Rotary Axes on Five-Axis Machine Tools by On-the-Machine Measurement Using a Touch-Trigger Probe
,”
Int. J. Mach. Tools Manuf.
,
68
, pp.
21
29
.
28.
Soichi
,
I.
,
Takeyuki
,
I.
, and
Tetsuya
,
M.
,
2013
, “
Error Map Construction for Rotary Axes on Five-Axis Machine Tools by On-the-Machine Measurement Using a Touch-Trigger Probe
,”
Int. J. Mach. Tools Manuf.
,
58
, pp.
44
53
.
29.
Cai
,
Y. L.
,
Cui
,
N. N.
,
Mo
,
X.
,
Yao
,
X. K.
, and
Sun
,
W. Q.
,
2016
, “
The Pre-Travel Error Study of Electrical Trigger Probe in On-Machine Measurement
,”
Key Eng. Mater.
,
693
, pp.
1466
1473
.
30.
Ma
,
X. S.
,
Qian
,
X. C.
,
Li
,
G. H.
, and
Zhong
,
W. H.
,
2010
, “
Modeling and Simulation of CMMs Probe Trigger Pre-Travel Error
,”
IEEE International Conference on Intelligent Systems and Knowledge Engineering
,
Hangzhou, China
,
Nov. 15–16
, pp.
528
532
.
31.
Li
,
S. L.
,
Zeng
,
L.
,
Feng
,
P. F.
,
Li
,
Y. M.
,
Xu
,
C.
, and
Ma
,
Y.
,
2019
, “
Accurate Compensation Method for Probe Pre-Travel Errors in On-Machine Inspections
,”
Int. J. Adv. Manuf. Technol.
,
103
(
5–8
), pp.
2401
2410
.
32.
Kristian
,
M.
,
1993
, “
Vectorial Tolerancing for All Types of Surfaces
,”
Adv. Des. Autom.
,
65
, pp.
187
198
.
33.
Huang
,
Q.
,
Zhou
,
N. R.
, and
Shi
,
J. J.
,
2000
, “
Stream of Variation Modeling and Diagnosis of Multi-Station Machining Processes
,”
Proceedings of IMECE 2000 International Mechanical Engineering Congress and Exposition
,
Orlando, FL
,
Nov. 5–10
, pp.
81
88
.
34.
Huang
,
Q.
,
Zhou
,
N. R.
, and
Shi
,
J. J.
,
2012
, “
Diagnosis of Multi-Operational Machining Processes Through Variation Propagation Analysis
,”
Rob. Comput. Int. Manuf.
,
18
(
3–4
), pp.
233
239
.
35.
Mantripragada
,
R.
, and
Whitney
,
D. E.
,
1999
, “
Modeling and Controlling Variation Propagation in Mechanical Assemblies Using State Transition Models
,”
IEEE Trans. Rob. Autom.
,
15
(
1
), pp.
124
140
.
36.
ISO/TS 14253
,
1999
, “
Geometrical Product Specification (GPS)—Inspection by Measurement of Workpieces and Measuring Equipment. Part 2: Guide to the Estimation of Uncertainty in GPS Measurement, in Calibration of Measuring Equipment and in Product Verification
,”
International Organization for Standardization, Geneva
, Technical Specification, ISO/TS 14253-2:1999.
37.
Bjӧrn
,
H.
, and
Heikki
,
L.
,
2001
, “
Calibration of Dial Indicators Using Machine Vision
,”
Meas. Sci. Technol.
,
13
, pp.
45
49
.
38.
Marcelo
,
K.
, and
Queenie
,
S. H. C.
,
2005
, “
The Positioning Influence of Dial Gauges on Their Calibration Results
,”
Measurement
,
38
(
1
), pp.
67
76
.
39.
Yan
,
Z. C.
, and
Menq
,
C. H.
,
1999
, “
Uncertainty Analysis and Variation Reduction of Three-Dimensional Coordinate Metrology. Part 2: Uncertainty Analysis
,”
Int. J. Mach. Tools Manuf.
,
39
(
8
), pp.
1219
1238
.
40.
Cui
,
C. C.
,
Fu
,
S. W.
, and
Huang
,
F. G.
,
2009
, “
Research on the Uncertainties From Different Form Error Evaluation Methods by CMM Sampling
,”
Int. J. Adv. Manuf. Technol.
,
43
(
1–2
), pp.
136
145
.
41.
Crowder
,
S. V.
, and
Moyer
,
R. D.
,
2006
, “
A Two-Stage Monte Carlo Approach to the Expression of Uncertainty With Non-Linear Measurement Equation and Small Sample Size
,”
Metrologia
,
43
(
1
), pp.
34
41
.
You do not currently have access to this content.