Abstract

Usually, the process capability indices (PCIs) Cp and Cpk are used to quantify the production quality of Geometric Dimensioning & Tolerancing (GD&T). For the most popular PCIs, a strong assumption about normality is required. Many previous works provide information about misleading conclusions when we use usual PCIs without any verification of the dataset normality. In recent industrial developments, many processes increasingly complicate, and GD&T are mostly geometrical specifications. For that reason, most characteristics are not normally distributed. There are two issues when calculating PCIs with nonnormal distributions. First, we have to define PCIs that can deal with all distributions. Second, we need to determine the distribution of the dataset. To do so, we give a short review of the previous work about calculating PCIs with nonnormal distributions. Following that first part, we propose our method for nonnormal distributions. This method uses new PCIs based on the quantile of a standard normal distribution. Then, we consider an estimation method based on a Student mixture model. This allows handling nonnormal distributions, potentially with outliers, and mixture distributions, which are often treated as two different fields and are common in industrial datasets. Finally, we propose some use cases to benchmark our new PCIs and Student mixture model for aircraft engines GD&T applications.

References

1.
Kane
,
V. E.
,
1986
, “
Process Capability Indices
,”
J. Qual. Technol.
,
18
(
1
), pp.
41
52
.
2.
Peel
,
D.
, and
McLachlan
,
G. J.
,
2000
, “
Robust Mixture Modelling Using the T Distribution
,”
Statist. Comput.
,
10
(
4
), pp.
339
348
.
3.
Anselmetti
,
B.
, and
Radouani
,
M.
,
2003
, “
Calcul statistique des chaînes de cotes avec des distributions hétérogènes non indépendantes
,”
IUT Cachan Paris
ENSAM of Meknès, Paper No. 59, pp.
1
16
.
4.
Deleryd
,
M.
,
1998
, “
On the Gap Between Theory and Practice of Process Capability Studies
,”
Int. J. Quality Reliability Manag.
,
15
(
2
), pp.
178
191
.
5.
Hsiang
,
T. C.
,
1985
, “
A Tutorial on Quality Control and Assurance—The Taguchi Methods
,” ASA Annual Meeting LA, PAPIER NII: 10024066979.
6.
Pearn
,
W. L.
,
Kotz
,
S.
, and
Johnson
,
N. L.
,
1992
, “
Distributional and Inferential Properties of Process Capability Indices
,”
J. Qual. Technol.
,
24
(
4
), pp.
216
231
.
7.
Razali
,
N. M.
, and
Wah
,
Y. B.
,
2011
, “
Power Comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling Tests
,”
J. Statist. Model. Anal.
,
2
(
1
), pp.
21
33
.
8.
Clements
,
J. A.
,
1989
, “
Process Capability Calculations, for Non-Normal Distributions
,”
Qual. Prog.
,
22
, pp.
95
100
.
9.
ISO 22514-1 : 2014 Technical Committee : ISO/TC 69/SC 4 Applications of Statistical Methods in Product and Process Management.
10.
Tong
,
L.-I.
, and
Chen
,
J.-P.
,
1998
, “
Lower Confidence Limits of Process Capability Indices for Non-Normal Process Distributions
,”
Int. J. Qual. Reliab. Manage.
,
15
(
8–1
), pp.
907
919
.
11.
Chen
,
J.-P.
,
2000
, “
Re-Evaluating the Process Capability Indices for Non-Normal Distributions
,”
Int. J. Prod. Res.
,
38
(
6
), pp.
1311
1324
.
12.
Liu
,
P.-H.
, and
Chen
,
F.-L.
,
2006
, “
Process Capability Analysis of Non-Normal Process Data Using the Burr Xii Distribution
,”
Int. J. Adv. Manuf. Technol.
,
27
(
9–10
), pp.
975
984
.
13.
Castagliola
,
P.
,
1996
, “
Evaluation of Non-Normal Process Capability Indices Using Burr’s Distributions
,”
Qual. Eng.
,
8
(
4
), pp.
587
593
.
14.
Pal
,
S.
,
2004
, “
Evaluation of Nonnormal Process Capability Indices Using Generalized Lambda Distribution
,”
Qual. Eng.
,
17
(
1
), pp.
77
85
.
15.
Polansky
,
A. M.
,
1998
, “
A Smooth Nonparametric Approach to Process Capability
,”
Qual. Reliab. Eng. Int.
,
14
(
1
), pp.
43
48
.
16.
Liu
,
J.
,
Huang
,
W.
,
Kong
,
Z.
, and
Zhou
,
Y.
,
2013
, “
Process Capability Analysis With Gd&t Specifications
,”
ASME International Mechanical Engineering Congress and Exposition
,
San Diego, CA
,
Nov. 15–21
, Vol.
56185
,
American Society of Mechanical Engineers
, p.
V02AT02A063
.
17.
Tahan
,
A. S.
, and
Cauvier
,
J.
,
2012
, “
Capability Estimation of Geometrical Tolerance With a Material Modifier by a Hasofer–Lind Index
,”
ASME J. Manuf. Sci. Eng.
,
134
(
2
), p.
021007
.
18.
Lépine, Jr
,
M.
, and
Tahan
,
A. S.
,
2016
, “
The Relationship Between Geometrical Complexity and Process Capability
,”
ASME J. Manuf. Sci. Eng.
,
138
(
5
), p.
051009
.
19.
Dempster
,
A. P.
,
Laird
,
N. M.
, and
Rubin
,
D. B.
,
1977
, “
Maximum Likelihood From Incomplete Data Via the Em Algorithm
,”
J. R. Statist. Soc. Methodolog.
,
39
(
1
), pp.
1
22
.
20.
McLachlan
,
G. J.
,
Krishnan
,
T.
, and
Ng
,
S. K.
,
2004
, “
The Em Algorithm. Papers/Humboldt-Universität Berlin
,”
Center Appl. Statist. Econom. (CASE)
,
24
.
21.
Nestoridis
,
V.
,
Schmutzhard
,
S.
, and
Stefanopoulos
,
V.
,
2011
, “
Universal Series Induced by Approximate Identities and Some Relevant Applications
,”
J. Approx. Theory
,
163
(
12
), pp.
1783
1797
.
22.
Marron
,
J. S.
, and
Wand
,
M. P.
,
1992
, “
Exact Mean Integrated Squared Error
,”
Ann. Statist.
,
20
(
2
), pp.
712
736
.
23.
Lange
,
K. L.
,
Little
,
R. J.
, and
Taylor
,
J. M.
,
1989
, “
Robust Statistical Modeling Using the T Distribution
,”
J. Am. Stat. Assoc.
,
84
(
408
), pp.
881
896
.
24.
McLachlan
,
G.
, and
Peel
,
D.
,
2000
,
Finite Mixture Models
,
John Wiley & Sons
,
New york
.
25.
Naim
,
I.
, and
Gildea
,
D.
,
2012
, “
Convergence of the em Algorithm for Gaussian Mixtures With Unbalanced Mixing Coefficients
,”
Proceedings of the 29th International Conference on Machine Learning
,
June
, pp.
1427
1431
.
26.
Ma
,
J.
,
Xu
,
L.
, and
Jordan
,
M. I.
,
2000
, “
Asymptotic Convergence Rate of the Em Algorithm for Gaussian Mixtures
,”
Neural Comput.
,
12
(
12
), pp.
2881
2907
.
27.
Bordes
,
L.
,
Chauveau
,
D.
, and
Vandekerkhove
,
P.
,
2007
, “
A Stochastic Em Algorithm for a Semiparametric Mixture Model
,”
Comput. Statist. Data Anal.
,
51
(
11
), pp.
5429
5443
.
You do not currently have access to this content.