Abstract

Single-crystal tungsten is widely utilized in various fields, benefiting from its outstanding properties. Nano-cutting, as an ultra-precision machining method, can realize high efficiency and low damage. However, from the atomic perspective, the formation mechanism of subsurface damage during the nano-cutting of tungsten is still unclear. Herein, the molecular dynamics (MD) simulation of nano-cutting single-crystal tungsten was established to elucidate the evolution of subsurface damage and the effects of cutting force on subsurface damage. The corresponding results showed the existence of damage including atomic cluster, vacancy defect, “V-shaped” dislocation, stair-rod dislocation, and dislocation ring on the subsurface during the cutting. There were dislocation lines in 1/2<111>, <100>, <110>, and other directions due to plastic deformation dominated by dislocation slip, and the 1/2<111> dislocation lines could be merged into stable <100> dislocation lines under certain circumstances during the cutting. The variation of cutting force and cutting force fluctuation induced by changing cutting parameters had a great influence on the subsurface damage of tungsten, including the number of surface defect atoms, dislocation density, and thickness of the subsurface damage layer. In nano-cutting of single-crystal tungsten, a smaller cutting depth and appropriate cutting speed should be selected to reduce subsurface damage. This study provides an insight into the evolution mechanism of subsurface damage of tungsten and is high of significance for achieving low-damage machining of tungsten components.

References

1.
Li
,
M.
,
Hou
,
Q.
,
Cui
,
J. C.
, and
Wang
,
J.
,
2018
, “
A Molecular Dynamics Study of Helium Bombardments on Tungsten Nanoparticles
,”
Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms
,
425
, pp.
43
49
.
2.
Li
,
X. Y.
,
Liu
,
W.
,
Xu
,
Y. C.
,
Liu
,
C. S.
,
Fang
,
Q. F.
,
Pan
,
B. C.
,
Chen
,
J. L.
,
Luo
,
G. N.
, and
Wang
,
Z. G.
,
2013
, “
An Energetic and Kinetic Perspective of the Grain Boundary Role in Healing Radiation Damage in Tungsten
,”
Nucl. Fusion
,
53
(
12
), p.
123014
.
3.
Pan
,
Y. A.
,
Kang
,
R. K.
,
Dong
,
Z. G.
,
Du
,
W. H.
,
Yin
,
S.
, and
Bao
,
Y.
,
2020
, “
On-Line Prediction of Ultrasonic Elliptical Vibration Cutting Surface Roughness of Tungsten Heavy Alloy Based on Deep Learning
,”
J. Intell. Manuf.
,
33
(
3
), pp.
675
685
.
4.
Guo
,
X. G.
,
Gou
,
Y. J.
,
Dong
,
Z. G.
,
Yuan
,
S.
,
Li
,
M.
,
Du
,
W. H.
, and
Kang
,
R. K.
,
2020
, “
Study on Subsurface Layer of Nano-Cutting Single Crystal Tungsten in Different Orientations
,”
Appl. Surf. Sci.
,
526
, p.
146608
.
5.
Wang
,
Q. L.
,
Bai
,
Q. S.
,
Chen
,
J. X.
,
Sun
,
Y. Z.
,
Guo
,
Y. B.
, and
Liang
,
Y. C.
,
2015
, “
Subsurface Defects Structural Evolution in Nano-Cutting of Single Crystal Copper
,”
Appl. Surf. Sci.
,
344
(
14
), pp.
38
46
.
6.
Wang
,
J. S.
,
Zhang
,
X. D.
,
Fang
,
F. Z.
,
Xu
,
F. F.
,
Chen
,
R. T.
, and
Xue
,
Z. F.
,
2020
, “
Study on Nano-Cutting of Brittle Material by Molecular Dynamics Using Dynamic Modeling
,”
Comput. Mater. Sci.
,
183
, p.
109851
.
7.
Wang
,
P. C.
,
Yu
,
J. G.
, and
Zhang
,
Q. X.
,
2020
, “
Nano-Cutting Mechanical Properties and Microstructure Evolution Mechanism of Amorphous/Single Crystal Alloy Interface
,”
Comput. Mater. Sci.
,
184
, p.
109915
.
8.
Zhao
,
L.
,
Zhang
,
J. J.
,
Zhang
,
J. G.
, and
Hartmaier
,
A.
,
2021
, “
Atomistic Investigation of Machinability of Monocrystalline 3C–SiC in Elliptical Vibration-Assisted Diamond Cutting
,”
Ceram. Int.
,
47
(
2
), pp.
2358
2366
.
9.
Zhang
,
C. Y.
,
Dong
,
Z. G.
,
Yuan
,
S.
,
Guo
,
X. G.
,
Kang
,
R. K.
, and
Guo
,
D. M.
,
2021
, “
Study on Subsurface Damage Mechanism of Gallium Nitride in Nano-Grinding
,”
Mater. Sci. Semicond. Process.
,
128
, p.
105760
.
10.
Goel
,
S.
,
Luo
,
X. C.
,
Agrawal
,
A.
, and
Reuben
,
R. L.
,
2014
, “
Diamond Machining of Silicon: A Review of Advances in Molecular Dynamics Simulation
,”
Int. J. Mach. Tools Manuf.
,
88
, pp.
131
164
.
11.
Li
,
P. H.
,
Guo
,
X. G.
,
Yuan
,
S.
,
Li
,
M.
,
Kang
,
R. K.
, and
Guo
,
D. M.
,
2021
, “
Effects of Grinding Speeds on the Subsurface Damage of Single Crystal Silicon Based on Molecular Dynamics Simulations
,”
Appl. Surf. Sci.
,
554
, p.
149688
.
12.
Wang
,
Y. Q.
,
Tang
,
S.
, and
Guo
,
J.
,
2020
, “
Molecular Dynamics Study on Deformation Behaviour of Monocrystalline GaN During Nano Abrasive Machining
,”
Appl. Surf. Sci.
,
510
, p.
145592
.
13.
Xu
,
Y. X.
,
Wang
,
M. C.
,
Zhu
,
F. L.
,
Liu
,
X. J.
,
Chen
,
Q.
,
Hu
,
J. X.
,
Lu
,
Z. L.
,
Zeng
,
P. J.
, and
Liu
,
Y. H.
,
2019
, “
A Molecular Dynamic Study of Nano-Grinding of a Monocrystalline Copper-Silicon Substrate
,”
Appl. Surf. Sci.
,
493
, pp.
933
947
.
14.
Kang
,
R. K.
,
Song
,
X.
,
Dong
,
Z. G.
,
Pan
,
Y. A.
,
Zhang
,
Y.
, and
Bao
,
Y.
,
2021
, “
Study on Surface Integrity of Tungsten Alloy Processed by Ultrasonic Elliptical Vibration Cutting
,”
Surf. Tech.
,
50
(
11
), pp.
321
328
.
15.
Xu
,
Z. Q.
,
Wang
,
J.
,
Yin
,
S. H.
,
Wu
,
H.
, and
Yi
,
L. Y.
,
2021
, “
Compound Machining of Tungsten Alloy Aspheric Mould by Oblique-Axis Grinding and Magnetorheological Polishing
,”
Int. J. Precis. Eng. Manuf.
,
22
(
9
), pp.
1487
1496
.
16.
Nath
,
C.
,
Rahman
,
M.
, and
Neo
,
K. S.
,
2009
, “
Machinability Study of Tungsten Carbide Using PCD Tools Under Ultrasonic Elliptical Vibration Cutting
,”
Int. J. Mach. Tools Manuf.
,
49
(
14
), pp.
1089
1095
.
17.
Sagar
,
C. K.
,
Priyadarshini
,
A.
, and
Gupta
,
A.
,
2021
, “
Experimental Investigations on the Effect of Tungsten Content on the Machining Behaviour of Tungsten Heavy Alloys
,”
Def. Sci. J.
,
71
(
2
), pp.
162
170
.
18.
Tamaki
,
J.
,
Kubo
,
A.
, and
Sharif
,
U. A. M. M.
,
2014
, “
Wear Characteristics of Nano-Polycrystalline Diamond Tool in Cutting of Tungsten Carbide
,”
Int. J. Mech. Manuf. Syst.
,
7
(
4–6
), pp.
227
245
.
19.
van Gunsteren
,
W.
, and
Berendsen
,
H. J. C.
,
1977
, “
Algorithms for Macromolecular Dynamics and Constraint Dynamics
,”
Mol. Phys.
,
34
(
5
), pp.
1311
1327
.
20.
Han
,
S. W.
,
Zepeda-Ruiz
,
L. A.
,
Ackland
,
G. J.
,
Car
,
R.
, and
Srolovitz
,
D. J.
,
2003
, “
Interatomic Potential for Vanadium Suitable for Radiation Damage Simulations
,”
J. Appl. Phys.
,
93
(
6
), pp.
3328
3335
.
21.
Tersoff
,
J.
,
1989
, “
Modeling Solid-State Chemistry: Interatomic Potentials for Multicomponent Systems
,”
Phys. Rev. B: Condens. Matter
,
39
(
8
), pp.
5566
5568
.
22.
Xie
,
W. K.
, and
Fang
,
F. Z.
,
2020
, “
Effect of Tool Edge Radius on Material Removal Mechanism in Atomic and Close-to-Atomic Scale Cutting
,”
Appl. Surf. Sci.
,
504
, p.
144451
.
23.
Fuentes-Cabrera
,
M.
,
Rhodes
,
B. H.
,
Fowlkes
,
J. D.
,
Lopez-Benzanilla
,
A.
,
Terrones
,
H.
,
Simpsonm
,
M. L.
, and
Rack
,
P. D.
,
2011
, “
Molecular Dynamics Study of the Dewetting of Copper on Graphite and Gaphene: Implications for Nanoscale Self-Assembly
,”
Phys. Rev. E
,
83
, p.
041603
.
24.
Stukowski
,
A.
,
2010
, “
Visualization and Analysis of Atomistic Simulation Data With OVITO—The Open Visualization Tool
,”
IEEE Trans. Fuzzy Syst.
,
18
(
1
), p.
015012
.
25.
Matteoli
,
E.
, and
Mansoori
,
G. A.
,
1995
, “
A Simple Expression for Radial Distribution Functions of Pure Fluids and Mixtures
,”
J. Chem. Phys.
,
103
(
11
), pp.
4672
4677
.
26.
Liang
,
Y. C.
,
Wang
,
Q. L.
,
Yu
,
N.
,
Chen
,
J. X.
,
Zha
,
F. S.
, and
Sun
,
Y. Z.
,
2013
, “
Study of Dislocation Nucleation Mechanism in Nanoindentation Process
,”
Nanosci. Nanotechnol. Lett.
,
5
(
5
), pp.
536
541
.
27.
Stukowski
,
A.
,
Bulatov
,
V.
, and
Arsenlis
,
A.
,
2012
, “
Automated Identification and Indexing of Dislocations in Crystal Interfaces
,”
Modell. Simul. Mater. Sci. Eng.
,
20
(
8
), p.
85007
.
28.
Wang
,
Q. L.
,
Bai
,
Q. S.
,
Chen
,
J. X.
,
Guo
,
Y. B.
, and
Xie
,
W. K.
,
2015
, “
Stress-Induced Formation Mechanism of Stacking Fault Tetrahedra in Nano-Cutting of Single Crystal Copper
,”
Appl. Surf. Sci.
,
355
, pp.
1153
1160
.
29.
Wang
,
Q. L.
,
Bai
,
Q. S.
,
Chen
,
J. X.
,
Su
,
H.
,
Wang
,
Z. G.
, and
Xie
,
W. K.
,
2015
, “
Influence of Cutting Parameters on the Depth of Subsurface Deformed Layer in Nano-Cutting Process of Single Crystal Copper
,”
Nanoscale Res. Lett.
,
10
(
1
), p.
396
.
30.
Zhang
,
C. Y.
,
Guo
,
X. G.
,
Yuan
,
S.
,
Dong
,
Z. G.
, and
Kang
,
R. K.
,
2021
, “
Effects of Initial Temperature on the Damage of GaN During Nanogrinding
,”
Appl. Surf. Sci.
,
556
, p.
149771
.
31.
Zhou
,
Y. G.
,
Ma
,
L. J.
,
Gong
,
Y. D.
,
Zhang
,
L.
,
Yin
,
G. Q.
, and
Sun
,
Y.
,
2019
, “
Study on Force and Temperature Characteristics of Micro-Grinding Nickel-Based Single-Crystal Superalloy
,”
J. Braz. Soc. Mech. Sci. Eng.
,
41
(
4
), p.
193
.
32.
Bulatov
,
V. V.
,
Hsiung
,
L. L.
,
Tang
,
M.
,
Arsenlis
,
A.
,
Bartelt
,
M. C.
,
Cai
,
W.
,
Florando
,
J. N.
, et al
,
2006
, “
Dislocation Multi-junctions and Strain Hardening
,”
Nature
,
440
(
7088
), pp.
1174
1178
.
33.
Bian
,
J.
,
Wang
,
G.
, and
Wang
,
G.
,
2013
, “
Atomistic Deformation Mechanisms in Copper Nanoparticles
,”
J. Comput. Theor. Nanosci.
,
10
(
9
), pp.
2299
2303
.
34.
Erel
,
C.
,
Po
,
G.
,
Crosby
,
T.
, and
Ghoniem
,
N.
,
2017
, “
Generation and Interaction Mechanisms of Prismatic Dislocation Loops in FCC Metals
,”
Comput. Mater. Sci.
,
140
, pp.
32
46
.
35.
Huang
,
H.
,
Li
,
X. L.
,
Mu
,
D. K.
, and
Lawn
,
B. R.
,
2021
, “
Science and Art of Ductile Grinding of Brittle Solids
,”
Int. J. Mach. Tools Manuf.
,
161
, p.
103675
.
36.
Zhang
,
C. Y.
,
Dong
,
Z. G.
,
Zhang
,
S. H.
,
Guo
,
X. G.
,
Yuan
,
S.
,
Jin
,
Z. J.
,
Kang
,
R. K.
, and
Guo
,
D. M.
,
2021
, “
The Deformation Mechanism of Gallium-Faces and Nitrogen-Faces Gallium Nitride During Nanogrinding
,”
Int. J. Mech. Sci.
,
214
, p.
106888
.
37.
Xu
,
F. F.
,
Fang
,
F. Z.
, and
Zhang
,
X. D.
,
2018
, “
Effects of Recovery and Side Flow on Surface Generation in Nano-Cutting of Single Crystal Silicon
,”
Comput. Mater. Sci.
,
143
, pp.
133
142
.
38.
Wang
,
B. J.
,
Gao
,
Y.
, and
Urbassek
,
K. M.
,
2014
, “
Microstructure and Magnetic Disorder Induced by Nanoindentation in Single-Crystalline Fe
,”
Phys. Rev. B
,
89
(
10
), pp.
106
112
.
39.
Wang
,
H.
,
Dong
,
Z. G.
,
Yuan
,
S.
,
Guo
,
X. G.
,
Kang
,
R. K.
, and
Bao
,
Y.
,
2022
, “
Effects of Tool Geometry on Tungsten Removal Behavior During Nano-Cutting
,”
Int. J. Mech. Sci.
,
225
, p.
107384
.
40.
Gay
,
P.
,
Hirsch
,
P. B.
, and
Kelly
,
A.
,
1953
, “
The Estimation of Dislocation Densities in Metals From X-ray Data
,”
Acta Metall.
,
1
(
3
), pp.
315
319
.
You do not currently have access to this content.