Abstract

Mirror error compensation is usually used to improve the machining precision of thin-walled parts. However, due to the time-varying cutting condition of thin-walled parts, this zero-order method may result in inadequate error compensation. To cope with this problem, an online first-order error compensation method is proposed for thin-walled parts. With this context, first, the time-varying cutting condition of thin-walled parts is defined with its in-process geometric and physical characteristics. Based on it, a first-order machining error compensation model is constructed. Then, before process starting, the theory geometric and physical characteristics of thin-walled parts are, respectively, obtained with CAM software and structure dynamic modification theory. After process performing, the real geometric characteristic of thin-walled parts is measured, and it is used to calculate the dimension error of thin-walled parts. Next, the error compensated value is evaluated to construct an error compensation surface, which is used to modify the tool center points of next process step. Finally, the machining error is compensated by performing the next process step. Two typical experiments, milling of thin-walled parts with plane- and curved-surface, are used to validate the proposed method, and the experiment results shown that this method can significantly improve the error compensation effect for low-stiffness structure. Compared with the mirror compensation, the final thickness error of thin-walled parts is reduced by 71.4% and 56.2%, respectively, for plane- and curved-surface parts.

References

1.
Irene
,
D. S.
,
Rivero
,
A.
,
Lacalle
,
L. N. L.
, and
Antonio
,
J. G.
,
2019
, “
Thin-Wall Machining of Light Alloys: A Review of Models and Industrial Approach
,”
Mater.
,
12
(
12
), p.
2012
.
2.
Gao
,
X.
,
Li
,
Y.
,
Liu
,
C.
, and
Zhang
,
C.
,
2015
, “
An Adjusting Method of Tool Path on Machine for NC Manufacture of Large Thin-Walled Aeronautical Part Based on Integration of CAM and CNC
,”
Acta Aeronaut. Astronaut. Sin.
,
36
(
12
), pp.
3980
3990
.
3.
Zhao
,
X.
,
Zheng
,
L. Y.
, and
Yu
,
L.
,
2021
, “
In-Process Adaptive Milling for Large-Scale Assembly Interfaces of a Vertical Tail Driven by Real-Time Vibration Data
,”
Chin. J. Aeronaut.
4.
Liu
,
Y.
,
Xiong
,
Z.
,
and Liu
,
H.
, and
Q
,
Z.
,
2020
, “
Stochastic Cutting Force Modeling and Prediction in Machining
,”
ASME J. Manuf. Sci. Eng.
,
142
(
12
), p.
121004
.
5.
Guo
,
M.
,
Wei
,
L.
,
C
,
Z.
,
Wang
,
M.
,
Wang
,
J.
,
and Liu
,
J.
, and
X
,
S.
,
2021
, “
Milling Force Prediction Model for Five-Axis Machining of Freeform Surface Considering Mesoscopic Size Effect
,”
ASME J. Manuf. Sci. Eng.
,
143
(
9
), p.
091013
.
6.
Liu
,
C.
,
Li
,
Y.
, and
Shen
,
W.
,
2018
, “
A Real Time Machining Error Compensation Method Based on Dynamic Features for Cutting Force Induced Elastic Deformation in Flank Milling
,”
Mach. Sci. Technol.
,
22
(
5
), pp.
766
786
.
7.
Budak
,
E.
,
2006
, “
Analytical Models for High Performance Milling. Part I. Cutting Force, Structure Deformations and Tolerance Integrity
,”
Int. J. Mach. Tools Manuf.
,
46
(
12–13
), pp.
1478
1488
.
8.
Bera
,
T.
,
Desai
,
K.
, and
Rao
,
P. V. M.
,
2011
, “
Error Compensation in Flexible End Milling of Tubular Geometries
,”
J. Mater. Process. Technol.
,
211
(
1
), pp.
24
34
.
9.
Ratchev
,
S.
,
Liu
,
S.
,
Huang
,
W.
, and
Becker
,
A.
,
2004
, “
Milling Error Prediction and Compensation in Machining of Low-Rigidity Parts
,”
Int. J. Mach. Tools Manuf.
,
44
(
15
), pp.
1629
1641
.
10.
Ge
,
G.
,
Du
,
Z.
, and
Yang
,
J.
,
2020
, “
Rapid Prediction and Compensation Method of Cutting Force-Induced Error for Thin-Walled Workpiece
,”
Int. J. Adv. Des. Manuf. Technol.
,
106
(
11–12
), pp.
5453
5462
.
11.
Habibi
,
M.
,
Tuysuz
,
Z. M.
, and
Altintas
,
Y.
,
2021
, “
Minimizing Flute of Engagement to Adjust Tool Orientation for Reducing Surface Errors in Five-Axis Ball End Milling Operations
,”
ASME J. Manuf. Sci. Eng.
,
142
(
2
), p.
021009
.
12.
Habibi
,
M.
,
Tuysuz
,
O.
, and
Altintas
,
Y.
,
2019
, “
Modification of Tool Orientation and Position to Compensate Tool and Part Deflections in Five-Axis Ball End Milling Operation
,”
ASME J. Manuf. Sci. Eng.
,
141
(
3
), p.
131004
.
13.
Liu
,
S.
,
Shao
,
X.
,
Ge
,
X.
, and
Dou
,
W.
,
2017
, “
Simulation of the Deformation Caused by the Machining Cutting Force on Thin-Walled Deep Cavity Parts
,”
Int. J. Adv. Manuf. Technol.
,
92
(
9–12
), pp.
3503
3517
.
14.
Wang
,
L.
, and
Si
,
H.
,
2018
, “
Machining Deformation Prediction of Thin-Walled Workpiece in Five-Axis Flank Milling
,”
Int. J. Adv. Des. Manuf. Technol.
,
97
(
9–12
), pp.
4179
4193
.
15.
Li
,
Z.
, and
Zhu
,
L.
,
2019
, “
Compensation of Deformation Errors in Five-Axis Flank Milling Thin-Walled Parts via Tool Path Optimization
,”
Precis. Eng.
,
55
, pp.
77
87
.
16.
Yang
,
J. X.
,
Aslan
,
D.
, and
Altintas
,
Y.
,
2018
, “
A Feedrate Scheduling Algorithm to Constrain Tool Tip Position and Tool Orientation Errors of Five-Axis CNC Machining Under Cutting Load Disturbances
,”
CIRP J. Manuf. Sci. Technol.
,
23
, pp.
78
90
.
17.
Fu
,
G.
,
Liu
,
J.
,
Rao
,
Y.
,
Gao
,
H.
,
Lu
,
C.
, and
Deng
,
X.
,
2020
, “
Geometric Error Compensation of Five-Axis Ball-End Milling Based on Tool Orientation Optimization and Tool Path Smoothing
,”
Int. J. Adv. Des. Manuf. Technol.
,
108
(
5–6
), pp.
1737
1749
.
18.
Ma
,
J.
,
Lu
,
X.
,
Li
,
G.
,
Qu
,
Z.
, and
Qin
,
F.
,
2020
, “
Toolpath Topology Design Based on Vector Field of Tool Feeding Direction in Sub-Regional Processing for Complex Curved Surface
,”
J. Manuf. Process.
,
52
, pp.
44
57
.
19.
Huang
,
N.
,
Bi
,
Q.
,
Wang
,
Y.
, and
Sun
,
C.
,
2014
, “
5-Axis Adaptive Flank Milling of Flexible Thin-Walled Parts Based on the on-Machine Measurement
,”
Int. J. Mach. Tools Manuf.
,
84
, pp.
1
8
.
20.
Lai
,
J.
,
Fu
,
J.
,
Wang
,
Y.
,
Shen
,
H.
,
Xu
,
Y.
, and
Chen
,
Z.
,
2015
, “
A Novel Method of Efficient Machining Error Compensation Based on NURBS Surface Control Points Reconstruction
,”
Mach. Sci. Technol.
,
19
(
3
), pp.
499
513
.
21.
Fu
,
G.
,
Gu
,
T.
,
Gao
,
H.
,
Jin
,
Y.
, and
Deng
,
X.
,
2018
, “
Geometric Error Compensation for Five-Axis Ball-End Milling by Considering Machined Surface Textures
,”
Int. J. Adv. Des. Manuf. Technol.
,
99
(
3
), pp.
1235
1248
.
22.
Hao
,
X. Z.
,
Li
,
Y. G.
,
Zhao
,
Z. W.
, and
Liu
,
C. Q.
,
2019
, “
Dynamic Machining Process Planning Incorporating in-Process Workpiece Deformation Data for Large-Size Aircraft Structural Parts
,”
Int. J. Comput. Integr. Manuf.
,
32
(
2
), pp.
136
147
.
23.
Hao
,
X. Z.
,
Li
,
Y. G.
,
Cheng
,
Y. H.
,
Liu
,
C. Q.
,
Xu
,
K.
, and
Tang
,
K.
,
2020
, “
A Time-Varying Geometry Modeling Method for Parts With Deformation During Machining Process
,”
J. Manuf. Sys.
,
55
, pp.
15
29
.
24.
Ma
,
W.
,
He
,
G.
,
Zhu
,
L.
, and
Guo
,
L.
,
2016
, “
Tool Deflection Error Compensation in Five-Axis Ball-End Milling of Sculptured Surface
,”
Int. J. Adv. Des. Manuf. Technol.
,
84
, pp.
1421
1430
.
25.
Wang
,
G.
,
Li
,
W.
,
Tong
,
G.
, and
Pang
,
C.
,
2017
, “
Improving the Machining Accuracy of Thin-Walled Parts by On-Line Measuring and Allowance Compensation
,”
Int. J. Adv. Des. Manuf. Technol.
,
92
(
5–8
), pp.
2755
2763
.
26.
Li
,
D.
,
Jiang X
,
Q.
,
Tong
,
Z.
, and
Blunt
,
L.
,
2019
, “
Development and Application of Interferometric On-Machine Surface Measurement for Ultraprecision Turning Process
,”
ASME J. Manuf. Sci. Eng.
,
141
(
1
), p.
014502
.
27.
Fan
,
W.
,
Zheng
,
L.
,
Ji
,
Y.
,
Xu
,
W.
,
Wang
,
X.
,
H
,
L.
, and
Zhao
,
X.
,
2021
, “
A Data-Driven Machining Error Analysis Method for Finish Machining of Assembly Interfaces of Large-Scale Components
,”
ASME J. Manuf. Sci. Eng.
,
143
(
4
), p.
041010
.
28.
Wang
,
X.
,
Li
,
Z.
,
Bi
,
Q.
,
Zhu
,
L.
, and
Ding
,
H.
,
2019
, “
An Acceleration Convergence Approach for Real-Time Deformation Compensation in Large Thin-Walled Parts Machining
,”
Int. J. Mach. Tools Manuf.
,
142
, pp.
98
106
.
29.
Meng
,
L.
,
Liu
,
H.
,
Zhang
,
T.
,
Bo
,
Q.
,
Li
,
T.
, and
Wang
,
Y.
,
2019
, “
Ultrasonic on-Machine Scanning for Thickness Measurement of Thin-Walled Parts: Modelling and Experiments
,”
Int. J. Adv. Des. Manuf. Technol.
,
104
(
5–8
), pp.
1
12
.
30.
Ibaraki
,
S.
,
Kimura
,
Y.
,
Nagai
,
Y.
, and
Nishikawa
,
S.
,
2015
, “
Formulation of Influence of Machine Geometric Errors on Five-Axis On-Machine Scanning Measurement by Using a Laser Displacement Sensor
,”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), p.
021013
.
31.
Singh
,
A.
, and
Agrawal
,
A.
,
2018
, “
Investigation of Parametric Effects on Geometrical Inaccuracies in Deformation Machining Process
,”
ASME J. Manuf. Sci. Eng.
,
140
(
7
), p.
074501
.
32.
Chen
,
M.
,
Sun
,
Y.
, and
Xu
,
J.
,
2020
, “
A New Analytical Path-Reshaping Model and Solution Algorithm for Contour Error Pre-Compensation in Multi-Axis Computer Numerical Control Machining
,”
ASME J. Manuf. Sci. Eng.
,
142
(
6
), p.
061002
.
33.
Chen
,
W.
,
Xue
,
J.
,
Tang
,
D.
,
Chen
,
H.
, and
Qu
,
S.
,
2009
, “
Deformation Prediction and Error Compensation in Multilayer Milling Processes for Thin-Walled Parts
,”
Int. J. Mach. Tools Manuf.
,
49
(
11
), pp.
859
864
.
34.
Guiassa
,
R.
, and
Mayer
,
J. R. R.
,
2011
, “
Predictive Compliance-Based Model for Compensation in Multi-Pass Milling by on-Machine Probing
,”
CIRP Ann-Manuf. Technol.
,
6
(
1
), pp.
391
394
.
35.
Huang
,
N.
,
Yin
,
C.
,
Liang
,
L.
,
Hu
,
J.
, and
Wu
,
S.
,
2018
, “
Error Compensation for Machining of Large Thin-Walled Part With Sculptured Surface Based on on-Machine Measurement
,”
Int. J. Adv. Des. Manuf. Technol.
,
96
(
9–12
), pp.
4345
4352
.
36.
Yang
,
J.
,
Zhang
,
D.
, and
Wu
,
B.
,
2014
, “
A Comprehensive Error Compensation Approach Considering Machining Process for Complex Thin-Wall Parts Machining
,”
Acta Aeronaut. Astronaut. Sin.
,
35
(
11
), pp.
3174
3181
.
37.
Hou
,
Y.
,
Zhang
,
D.
, and
Zhang
,
Y.
,
2018
, “
Error Compensation Modeling and Learning Control Method for Thin-Walled Part Milling Process
,”
J. Mech. Eng.
,
54
(
17
), pp.
108
115
.
38.
Hou
,
Y.
,
Zhang
,
D.
,
Mei
,
J.
,
Zhang
,
Y.
, and
Luo
,
M.
,
2019
, “
Geometric Modelling of Thin-Walled Blade Based on Compensation Method of Machining Error and Design Intent
,”
J. Manuf. Process.
,
44
, pp.
327
336
.
41.
Yang
,
Y.
,
Zhang
,
W.
,
Ma
,
Y.
,
Wan
,
M.
, and
Dang
,
X.
,
2019
, “
An Efficient Decomposition-Condensation Method for Chatter Prediction in Milling Large-Scale Thin-Walled Structures
,”
Mech. Syst. Signal. Pr.
,
121
, pp.
58
76
.
You do not currently have access to this content.