Abstract

To realize smart manufacturing in various machining processes, tool condition monitoring (TCM) systems are employed to detect the state of the tool in optimizing tool conditions and preventing catastrophic failures. However, many developed TCM systems lack flexibility and require extensive setup. To address these issues, the proposed algorithm takes advantage of repetitive machining operations in mass production settings and adopts similarity analysis to realize TCM by comparing the signals collected from the tool with known conditions against the signals generated by the tool to be monitored. To validate the effectiveness of the proposed TCM system, a case study was performed in which the power signal was collected and used in the similarity analysis. According to this case study, it has been proved that the proposed TCM algorithm is able to accurately predict the state of the tool, i.e., tool wear, with a very simple and flexible solution. Furthermore, several tool condition-induced machining parameters have been evaluated to satisfy various monitoring requirements. Nearly all evaluated machining parameters validated the performance and flexibility of the TCM algorithm.

References

1.
Kim
,
S.
,
1990
, “
Real-Time Cutting Tool Condition Monitoring in Milling by Means of Torsional Vibration Measurement of the Spindle Shaft
,”
Ph.D. dissertation
,
University of Minnesota
,
Minneapolis, MN
.
2.
Cui
,
Y.
,
2008
, “
Tool Wear Monitoring for Milling by Tracking Cutting Force Model Coefficients
,”
MS dissertation
,
Univeristy of New Hampshire
,
Durham, NH
.
3.
Zhang
,
C.
, and
Zhang
,
H.
,
2015
, “
Modelling and Prediction of Tool Wear Using LS-SVM in Milling Operation
,”
Int. J. Comput. Integr. Manuf.
,
29
(
1
), pp.
1
16
.
4.
Ritou
,
M.
,
Garnier
,
S.
,
Furet
,
B.
, and
Hascoet
,
J.-Y.
,
2006
, “
A New Versatile In-Process Monitoring System for Milling
,”
Int. J. Mach. Tools Manuf.
,
46
(
15
), pp.
2026
2035
.
5.
Nouri
,
M.
,
Fussell
,
B. K.
,
Ziniti
,
B. L.
, and
Linder
,
E.
,
2015
, “
Real-Time Tool Wear Monitoring in Milling Using a Cutting Condition Independent Method
,”
Int. J. Mach. Tools Manuf.
,
89
, pp.
1
13
.
6.
Elbestawi
,
M. A.
,
Papazafiriou
,
T. A.
, and
Du
,
R. X.
,
1991
, “
In-Process Monitoring of Tool Wear in Milling Using Cutting Force Signature
,”
Int. J. Mach. Tools Manuf.
,
31
(
1
), pp.
55
73
.
7.
Yesilyurt
,
I.
, and
Ozturk
,
H.
,
2007
, “
Tool Condition Monitoring in Milling Using Vibration Analysis
,”
Int. J. Prod. Res.
,
45
(
4
), pp.
1013
1028
.
8.
Chen
,
C. J.
, and
Chen
,
W.-L.
,
1999
, “
A Tool Breakage Detection System Using an Accelerometer Sensor
,”
J. Intell. Manuf.
,
10
(
2
), pp.
187
197
.
9.
Li
,
Z.
,
Liu
,
R.
, and
Wu
,
D.
,
2019
, “
Data-Driven Smart Manufacturing: Tool Wear Monitoring With Audio Signals and Machine Learning
,”
J. Manuf. Process.
,
48
, pp.
66
76
.
10.
Kothuru
,
A.
,
Nooka
,
S. P.
, and
Liu
,
R.
,
2018
, “
Audio-Based Tool Condition Monitoring in Milling of the Workpiece Material With the Hardness Variation Using Support Vector Machines and Convolutional Neural Networks
,”
ASME J. Manuf. Sci. Eng.
,
140
(
11
), p.
111006
.
11.
Sarhan
,
A.
,
Sayed
,
R.
,
Nassr
,
A. A.
, and
El-Zahry
,
R. M.
,
2001
, “
Interrelationships Between Cutting Force Variation and Tool Wear in End-Milling
,”
J. Mater. Process. Technol.
,
109
(
3
), pp.
229
235
.
12.
Kothuru
,
A.
,
Nooka
,
S. P.
, and
Liu
,
R.
,
2019
, “
Application of Deep Visualization in CNN-Based Tool Condition Monitoring for End Milling
,”
Procedia Manuf.
,
34
, pp.
995
1004
.
13.
Liu
,
R.
,
2020
, “
A Novel Edge Computing Based Architecture for Intelligent Tool Condition Monitoring
,”
Proceedings of the ASME 2020 15th International Manufacturing Science and Engineering Conference.
14.
Wang
,
J.
,
Xie
,
J.
,
Zhao
,
R.
,
Zhang
,
L.
, and
Duan
,
L.
,
2017
, “
Multisensory Fusion Based Virtual Tool Wear Sensing for Ubiquitous Manufacturing
,”
Rob. Comput. Integr. Manuf.
,
45
, pp.
47
58
.
15.
Chen
,
Y.
,
Jin
,
Y.
, and
Jiri
,
G.
,
2018
, “
Predicting Tool Wear With Multi-Sensor Data Using Deep Belief Networks
,”
Int. J. Adv. Manuf. Technol.
,
99
(
5–8
), pp.
1917
1926
.
16.
Rehorn
,
A. G.
,
Jiang
,
J.
, and
Orban
,
P. E.
,
2005
, “
State-of-the-Art Methods and Results in Tool Condition Monitoring: A Review
,”
Int. J. Adv. Manuf. Technol.
,
26
(
7–8
), pp.
693
710
.
17.
Kothuru
,
A.
,
Nooka
,
S. P.
, and
Liu
,
R.
,
2018
, “
Application of Audible Sound Signals for Tool Wear Monitoring Using Machine Learning Techniques in End Milling
,”
Int. J. Adv. Manuf. Technol.
,
95
(
9–12
), pp.
3797
3808
.
18.
Wang
,
W. H.
,
Wong
,
Y. S.
, and
Hong
,
G. S.
,
2006
, “
3D Measurement of Crater Wear by Phase Shifting Method
,”
Wear
,
261
(
2
), pp.
164
171
.
19.
Kasim
,
M. S.
,
Che Haron
,
C. H.
,
Ghani
,
J. A.
,
Sulaiman
,
M. A.
, and
Yazid
,
M. Z. A.
,
2013
, “
Wear Mechanism and Notch Wear Location Prediction Model in Ball Nose End Milling of Inconel 718
,”
Wear
,
302
(
1–2
), pp.
1171
1179
.
20.
Kim
,
S.
, and
Klamecki
,
B. E.
,
1997
, “
Milling Cutter Wear Monitoring Using Spindle Shaft Vibration
,”
ASME J. Manuf. Sci. Eng.
,
119
(
1
), pp.
118
119
.
21.
Altintas
,
Y.
, and
Yellowley
,
I.
,
1989
, “
In-Process Detection of Tool Failure in Milling Using Cutting Force Models
,”
ASME J. Manuf. Sci. Eng.
,
111
(
2
), pp.
149
157
.
22.
Hutton
,
D. V.
, and
Hu
,
F.
,
1999
, “
Acoustic Emission Monitoring of Tool Wear in End-Milling Using Time-Domain Averaging
,”
ASME J. Manuf. Sci. Eng
,
121
(
1
), pp.
8
12
.
23.
Lee
,
B. Y.
, and
Tarng
,
Y. S.
,
1999
, “
Application of the Discrete Wavelet Transform to the Monitoring of Tool Failure in End Milling Using the Spindle Motor Current
,”
Int. J. Adv. Manuf. Technol.
,
15
(
4
), pp.
238
243
.
24.
Altintas
,
Y.
,
1988
, “
In-Process Detection of Tool Breakages Using Time Series Monitoring of Cutting Forces
,”
Int. J. Mach. Tools Manuf.
,
28
(
2
), pp.
157
172
.
25.
Li
,
X.
,
2001
, “
Detection of Tool Flute Breakage in End Milling Using Feed-Motor Current Signatures
,”
IEEE/ASME Trans. Mechatron.
,
6
(
4
), pp.
491
498
.
26.
Bai
,
X.
,
Hou
,
S.
,
Li
,
K.
,
Qu
,
Y.
, and
Zhang
,
T.
,
2019
, “
Experimental Investigation of the Temperature Elevation in Bone Drilling Using Conventional and Vibration-Assisted Methods
,”
Med. Eng. Phys.
,
69
, pp.
1
7
.
27.
Kemper
,
A.
,
Santago
,
A.
,
Sparks
,
J.
,
Thor
,
C.
,
Gabler
,
H. C.
,
Stitzel
,
J.
, and
Duma
,
S.
,
2014
, “
Multi-Scale Biomechanical Characterization of Human Liver and Spleen
,”
Proceedings of 22nd International Technical Conference on the Enhanced Safety of Vehicles (ESV)
, (
1
), pp.
1
5
.
28.
Wu
,
D.
,
Jennings
,
C.
,
Terpenny
,
J.
,
Gao
,
R. X.
, and
Kumara
,
S.
,
2017
, “
A Comparative Study on Machine Learning Algorithms for Smart Manufacturing: Tool Wear Prediction Using Random Forests
,”
ASME J. Manuf. Sci. Eng.
,
139
(
7
), p.
071018
.
29.
Ji
,
W.
,
Shi
,
J.
,
Liu
,
X.
,
Wang
,
L.
, and
Liang
,
S. Y.
,
2017
, “
A Novel Approach of Tool Wear Evaluation
,”
ASME J. Manuf. Sci. Eng.
,
139
(
9
), p.
091015
.
30.
Liu
,
Z. Q.
,
Ai
,
X.
,
Zhang
,
H.
,
Wang
,
Z. T.
, and
Wan
,
Y.
,
2002
, “
Wear Patterns and Mechanisms of Cutting Tools in High-Speed Face Milling
,”
J. Mater. Process. Technol.
,
129
(
1–3
), pp.
222
226
.
31.
Shaw
,
M. C.
,
2005
,
Metal Cutting Principles
,
Oxford University Press
,
New York
.
32.
Abellan-Nebot
,
J. V.
, and
Romero Subirón
,
F.
,
2010
, “
A Review of Machining Monitoring Systems Based on Artificial Intelligence Process Models
,”
Int. J. Adv. Manuf. Technol.
,
47
(
1–4
), pp.
237
257
.
33.
Scheffer
,
C.
,
Engelbrecht
,
H.
, and
Heyns
,
P. S.
,
2005
, “
A Comparative Evaluation of Neural Networks and Hidden Markov Models for Monitoring Turning Tool Wear
,”
Neural Comput. Appl.
,
14
(
4
), pp.
325
336
.
34.
Chung
,
K. T.
, and
Geddam
,
A.
,
2003
, “
A Multi-Sensor Approach to the Monitoring of End Milling Operations
,”
J. Mater. Process. Technol.
,
139
(
1–3 SPEC
), pp.
15
20
.
35.
Čuš
,
F.
, and
Župerl
,
U.
,
2011
, “
Real-Time Cutting Tool Condition Monitoring in Milling
,”
Stroj. Vestn./J. Mech. Eng.
,
57
(
2
), pp.
142
150
.
36.
Kline
,
W. A.
,
DeVor
,
R. E.
, and
Shareef
,
I. A.
,
1982
, “
The Prediction of Surface Accuracy in End Milling
,”
ASME J. Eng. Ind.
,
104
(
3
), pp.
272
278
.
37.
Mijušković
,
G.
,
Krajnik
,
P.
, and
Kopač
,
J.
,
2015
, “
Analysis of Tool Deflection in Micro Milling of Graphite Electrodes
,”
Int. J. Adv. Manuf. Technol.
,
76
, pp.
209
217
.
38.
Biermann
,
D.
, and
Heilmann
,
M.
,
2010
, “Burr Minimization Strategies in Machining Operations,”
Burrs—Analysis, Control and Removal
,
J. C.
Aurich
, and
D.
Dornfeld
, eds.,
Springer Berlin Heidelberg
,
Berlin/Heidelberg
.
39.
Olovsjö
,
S.
,
Wretland
,
A.
, and
Sjöberg
,
G.
,
2010
, “
The Effect of Grain Size and Hardness of Waspaloy on the Wear of Cemented Carbide Tools
,”
Int. J. Adv. Manuf. Technol.
,
50
(
9–12
), pp.
907
915
.
40.
Cedergren
,
S.
,
Olovsjö
,
S.
,
Sjöberg
,
G.
, and
Nyborg
,
L.
,
2013
, “
The Effects of Grain Size and Feed Rate on Notch Wear and Burr Formation in Wrought Alloy 718
,”
Int. J. Adv. Manuf. Technol.
,
67
(
5–8
), pp.
1501
1507
.
You do not currently have access to this content.