Abstract

This paper presents a novel real-time interpolation technique for five-axis machine tools to attain higher speed and accuracy. To realize computationally efficient real-time interpolation of 6-DOF tool motion, a joint workpiece–machine coordinate system interpolation scheme is proposed. Cartesian motion of the tool center point (TCP) is interpolated in the workpiece coordinate system (WCS), whereas tool orientation is interpolated in the machine coordinate system (MCS) based on the finite impulse response filtering. Such an approach provides several advantages: (i) it eliminates the need for complex real-time spherical interpolation techniques, (ii) facilitates efficient use of slower rotary drive kinematics to compensate for the dynamic mismatch between Cartesian and rotary axes and achieve higher tool acceleration, and (iii) mitigates feed fluctuations while interpolating near kinematic singularities. To take advantage of such benefits and realize accurate joint WCS–MCS interpolation scheme, tool orientation interpolation errors are analyzed. A novel approach is developed to adaptively discretize long linear tool moves and confine interpolation errors within user set tolerances. Synchronization errors between TCP and tool orientation are also characterized, and peak synchronization error level is determined to guide the interpolation parameter selection. Finally, blending errors during non-stop continuous interpolation of linear toolpaths are modeled and confined. Advantages of the proposed interpolation scheme are demonstrated through simulation studies and validated experimentally. Overall, proposed technique can improve cycle times up to 10% while providing smooth and accurate non-stop real-time interpolation of tool motion in five-axis machining.

References

1.
Geng
,
C.
,
Wu
,
Y.
, and
Qiu
,
J.
,
2018
, “
Analysis of Nonlinear Error Caused by Motions of Rotation Axes for Five-Axis Machine Tools With Orthogonal Configuration
,”
Math. Probl. Eng.
,
2018
, pp.
1
16
.
2.
Zhang
,
K.
,
Zhang
,
L.
, and
Yan
,
Y.
,
2016
, “
Single Spherical Angle Linear Interpolation for the Control of Non-Linearity Errors in Five-Axis Flank Milling
,”
Int. J. Adv. Manuf. Technol.
,
87
(
9–12
), pp.
3289
3299
.
3.
Erkorkmaz
,
K.
, and
Altintas
,
Y.
,
2005
, “
Quintic Spline Interpolation With Minimal Feed Fluctuation
,”
ASME J. Manuf. Sci. Eng.
,
127
(
2
), pp.
339
349
.
4.
Erkorkmaz
,
K.
,
Yeung
,
C. H.
, and
Altintas
,
Y.
,
2006
, “
Virtual CNC System. Part II. High Speed Contouring Application
,”
Int. J. Mach. Tools Manuf.
,
46
(
10
), pp.
1124
1138
.
5.
Yeung
,
C. H.
,
Altintas
,
Y.
, and
Erkorkmaz
,
K.
,
2006
, “
Virtual CNC System. Part I. System Architecture
,”
Int. J. Mach. Tools Manuf.
,
46
(
10
), pp.
1107
1123
.
6.
Sencer
,
B.
,
Ishizaki
,
K.
, and
Shamoto
,
E.
,
2015
, “
A Curvature Optimal Sharp Corner Smoothing Algorithm for High-Speed Feed Motion Generation of NC Systems Along Linear Tool Paths
,”
Int. J. Adv. Manuf. Technol.
,
76
(
9–12
), pp.
1977
1992
.
7.
Ernesto
,
C. A.
, and
Farouki
,
R. T.
,
2012
, “
High-Speed Cornering by CNC Machines Under Prescribed Bounds on Axis Accelerations and Toolpath Contour Error
,”
Int. J. Adv. Manuf. Technol.
,
58
(
1–4
), pp.
327
338
.
8.
Lin
,
M. T.
,
Tsai
,
M. S.
, and
Yau
,
H. T.
,
2007
, “
Development of a Dynamics-Based NURBS Interpolator With Real-Time Look-Ahead Algorithm
,”
Int. J. Mach. Tools Manuf.
,
47
(
15
), pp.
2246
2262
.
9.
Zhao
,
H.
,
Zhu
,
L. M.
, and
Ding
,
H.
,
2013
, “
A Real-Time Look-Ahead Interpolation Methodology With Curvature-Continuous B-Spline Transition Scheme for CNC Machining of Short Line Segments
,”
Int. J. Mach. Tools Manuf.
,
65
, pp.
88
98
.
10.
Beudaert
,
X.
,
Lavernhe
,
S.
, and
Tournier
,
C.
,
2013
, “
5-Axis Local Corner Rounding of Linear Tool Path Discontinuities
,”
Int. J. Mach. Tools Manuf.
,
73
, pp.
9
16
.
11.
Tulsyan
,
S.
, and
Altintas
,
Y.
,
2015
, “
Local Toolpath Smoothing for Five-Axis Machine Tools
,”
Int. J. Mach. Tools Manuf.
,
96
, pp.
15
26
.
12.
Sun
,
S.
, and
Altintas
,
Y.
,
2021
, “
A G3 Continuous Tool Path Smoothing Method for 5-Axis CNC Machining
,”
CIRP J. Manuf. Sci. Technol.
,
32
, pp.
529
549
.
13.
Huang
,
J.
,
Du
,
X.
, and
Zhu
,
L. M.
,
2018
, “
Real-Time Local Smoothing for Five-Axis Linear Toolpath Considering Smoothing Error Constraints
,”
Int. J. Mach. Tools Manuf.
,
124
, pp.
67
79
.
14.
Bi
,
Q.
,
Shi
,
J.
,
Wang
,
Y.
,
Zhu
,
L.
, and
Ding
,
H.
,
2015
, “
Analytical Curvature-Continuous Dual-Bézier Corner Transition for Five-Axis Linear Tool Path
,”
Int. J. Mach. Tools Manuf.
,
91
, pp.
96
108
.
15.
Yang
,
J.
, and
Yuen
,
A.
,
2017
, “
An Analytical Local Corner Smoothing Algorithm for Five-Axis CNC Machining
,”
Int. J. Mach. Tools Manuf.
,
123
, pp.
22
35
.
16.
Sencer
,
B.
,
Altintas
,
Y.
, and
Croft
,
E.
,
2008
, “
Feed Optimization for Five-Axis CNC Machine Tools With Drive Constraints
,”
Int. J. Mach. Tools Manuf.
,
48
(
7–8
), pp.
733
745
.
17.
Beudaert
,
X.
,
Lavernhe
,
S.
, and
Tournier
,
C.
,
2012
, “
Feedrate Interpolation With Axis Jerk Constraints on 5-Axis NURBS and G1 Tool Path
,”
Int. J. Mach. Tools Manuf.
,
57
, pp.
73
82
.
18.
Tajima
,
S.
, and
Sencer
,
B.
,
2017
, “
Global Tool-Path Smoothing for CNC Machine Tools With Uninterrupted Acceleration
,”
Int. J. Mach. Tools Manuf.
,
121
, pp.
81
95
.
19.
Li
,
D.
,
Zhang
,
L.
,
Yang
,
L.
, and
Mao
,
J.
,
2020
, “
Accurate Interpolation and Contouring Control Algorithm Based on FIR Filters for the Corner Transition
,”
Int. J. Adv. Manuf. Technol.
,
109
(
7–8
), pp.
1775
1788
.
20.
Ward
,
R.
,
Sencer
,
B.
,
Jones
,
B.
, and
Ozturk
,
E.
,
2021
, “
Accurate Prediction of Machining Feedrate and Cycle Times Considering Interpolator Dynamics
,”
Int. J. Adv. Manuf. Technol.
,
116
(
1–2
), pp.
417
438
.
21.
Tajima
,
S.
, and
Sencer
,
B.
,
2019
, “
Accurate Real-Time Interpolation of 5-Axis Tool-Paths With Local Corner Smoothing
,”
Int. J. Mach. Tools Manuf.
,
142
, pp.
1
15
.
22.
Liu
,
Y.
,
Wan
,
M.
,
Qin
,
X. B.
,
Xiao
,
Q. B.
, and
Zhang
,
W. H.
,
2020
, “
FIR Filter-Based Continuous Interpolation of G01 Commands With Bounded Axial and Tangential Kinematics in Industrial Five-Axis Machine Tools
,”
Int. J. Mech. Sci.
,
169
, p.
105325
.
23.
Jiang
,
Y.
,
Han
,
J.
,
Xia
,
L.
,
Lu
,
L.
,
Tian
,
X.
, and
Liu
,
H.
,
2020
, “
A Decoupled Five-Axis Local Smoothing Interpolation Method to Achieve Continuous Acceleration of Tool Axis
,”
Int. J. Adv. Manuf. Technol.
,
111
(
1–2
), pp.
449
470
.
24.
Tajima
,
S.
,
Sencer
,
B.
,
Yoshioka
,
H.
, and
Shinno
,
H.
,
2020
, “
Smooth Path Blending for 5-Axis Machine Tools
,” JSME 2020 Conf. Lead. Edge Manuf. Process., LEMP 2020, virtual online, pp.
2
6
.
25.
Beudaert
,
X.
,
Pechard
,
P. Y.
, and
Tournier
,
C.
,
2011
, “
5-Axis Tool Path Smoothing Based on Drive Constraints
,”
Int. J. Mach. Tools Manuf.
,
51
(
12
), pp.
958
965
.
26.
Huang
,
X.
,
Zhao
,
F.
,
Tao
,
T.
, and
Mei
,
X.
,
2020
, “
A Novel Local Smoothing Method for Five-Axis Machining With Time-Synchronization Feedrate Scheduling
,”
IEEE Access
,
8
, pp.
89185
89204
.
27.
Zhang
,
Y.
,
Wang
,
T.
,
Peng
,
P.
,
Dong
,
J.
,
Cao
,
L.
, and
Tian
,
C.
,
2021
, “
Feedrate Blending Method for Five-Axis Linear Tool Path Under Geometric and Kinematic Constraints
,”
Int. J. Mech. Sci.
,
195
, p.
106262
.
28.
Tajima
,
S.
,
Sencer
,
B.
, and
Shamoto
,
E.
,
2018
, “
Accurate Interpolation of Machining Tool-Paths Based on FIR Filtering
,”
Precis. Eng.
,
52
, pp.
332
344
.
29.
Jung
,
Y. H.
,
Lee
,
D. W.
,
Kim
,
J. S.
, and
Mok
,
H. S.
,
2002
, “
NC Post-Processor for 5-Axis Milling Machine of Table-Rotating/Tilting Type
,”
J. Mater. Process. Technol.
,
130–131
, pp.
641
646
.
30.
Ho
,
M. C.
,
Hwang
,
Y. R.
, and
Hu
,
C. H.
,
2003
, “
Five-Axis Tool Orientation Smoothing Using Quaternion Interpolation Algorithm
,”
Int. J. Mach. Tools Manuf.
,
43
(
12
), pp.
1259
1267
.
31.
Jennings
,
G. A.
,
1994
,
Spherical Geometry
,
Springer
,
New York
, pp.
43
82
.
32.
Jousselin
,
B.
,
Quinsat
,
Y.
, and
Tournier
,
C.
,
2021
, “
Tool Axis Adjustment for 5-Axis Roughing Operations
,”
CIRP J. Manuf. Sci. Technol.
,
35
, pp.
615
623
.
33.
Li
,
D.
,
Zhang
,
W.
,
Zhou
,
W.
,
Shang
,
T.
, and
Fleischer
,
J.
,
2018
, “
Dual NURBS Path Smoothing for 5-Axis Linear Path of Flank Milling
,”
Int. J. Precis. Eng. Manuf.
,
19
(
12
), pp.
1811
1820
.
34.
Zhang
,
J.
,
Zhang
,
L.
,
Zhang
,
K.
, and
Mao
,
J.
,
2016
, “
Double NURBS Trajectory Generation and Synchronous Interpolation for Five-Axis Machining Based on Dual Quaternion Algorithm
,”
Int. J. Adv. Manuf. Technol.
,
83
(
9–12
), pp.
2015
2025
.
You do not currently have access to this content.