Abstract

There are increasingly more aggressive hydrocarbons, as they have high contents of hydrogen sulfide/carbon dioxide, under conditions of high pressure/high temperature. For driving these aggressive hydrocarbons, one of the most cost-effective solutions is the coating and cladding on conventional carbon steel using a corrosion-resistant alloy. The overlay is one of the methods used for the application of this cladding. However, among the main problems of this method is the dilution and micro-segregation, which causes a decrease in corrosion resistance and its subsequent failure. In this work, the application of the gas-shielded metal arc welding process with the interaction of electromagnetic fields of low intensity is proposed to overcome or at least minimize these problems. API X60 was used as base material and 316L as overlay. The interaction of the magnetic field (MF) with the molten metal causes the temperature to become homogeneous, induces grain refinement, reduces the extent of the heat-affected zone, leads to a decrement in microhardness, a decrease in dilution and micro-segregation, as well as the elimination of the magnetic blow, stabilizing the arc. This coating technique can be applied to pipelines and fittings as the trim of submarine equipment used for driving aggressive hydrocarbon.

References

1.
API
,
2015
, CRA Clad or Lined Steel Pipe, American Petroleum Institute, Washington, DC, Standard No. API Spec 5LD.
2.
DNV
,
2013
, Submarine Pipeline Systems, Det Norske Veritas, Oslo, Norway, Standard No. DNV OS-F101.
3.
EEMUA
,
2012
, Guidelines for Materials Selection and Corrosion Control for Subsea Oil and Gas Production Equipment, Publication 194.
4.
ISO
,
2010
, Petroleum, Petrochemical and Natural Gas Industries—Materials Selection and Corrosion Control for Oil and Gas Production Systems, International Organization for Standardization, Geneva, Switzerland, Standard No. ISO 21457.
5.
Smith
,
L.
,
2012
, Engineering With Clad Steel, 2nd ed., Nickel Institute, Technical Series No. 10064.
6.
Smith
,
L.
, and
Celant
,
M.
,
1989
,
Practical Handbook of Cladding Technology
,
Casti Publishing Inc.
,
Edmonton, UK
.
7.
Kane
,
R. D.
,
Wilheim
,
S. M.
,
Yoshida
,
T.
,
Matsui
,
S.
, and
Iwase
,
T.
,
1991
, “
Analysis of Bimetallic Pipe for Sour Service
,”
Soc. Pet. Eng.
,
6
(
3
), pp.
291
296
.
8.
Rashid
,
L.
,
2016
, “
Overlay Welding of FeCrAl Alloys
,”
Master thesis
,
Mechanical Engineering
,
Hallstahammar, Sweden
.
9.
Lee
,
C.
,
Verhaeghe
,
G.
,
Raghunathan
,
S.
, and
Kumar
,
V.
,
2010
, “
CRA Weld Overlay—Influence of Welding Process and Parameters on Dilution and Corrosion Resistance
,”
Paper Presented at Stainless Steel World America 2010
,
Houston, TX
,
Oct. 5–7
.
10.
Uddin
,
M.
,
Santifoller
,
R.
,
Hall
,
C.
, and
Schlaefer
,
T.
,
2022
, “
A Grinding-Burnishing Approach to Enhancing Surface Integrity, Tribological, and Corrosion Behavior of Laser-Cladded AISI 431 Alloys
,”
ASME J. Manuf. Sci. Eng.
,
144
(
7
), p.
071003
.
11.
Vogt
,
S.
,
Göbel
,
M.
, and
Fu
,
E.
,
2022
, “
Perspectives for Conventional Coating Processes Using High-Speed Laser Cladding
,”
ASME J. Manuf. Sci. Eng.
,
144
(
4
), p.
044501
.
12.
García-Moreno
,
A. I.
,
Alvarado-Orozco
,
J. M.
,
Ibarra-Medina
,
J.
, and
Martínez-Franco
,
E.
,
2021
, “
Molten Pool Tracking Using a Superpixel-Based Approach in a Laser Metal Deposition Process
,”
ASME J. Manuf. Sci. Eng.
,
143
(
10
), p.
101002
.
13.
Song
,
H.
,
Li
,
M.
,
Wang
,
M.
,
Wu
,
B.
,
Liu
,
Z.
,
Ding
,
H.
, and
Liu
,
W.
,
2021
, “
Preliminary Experimental Study of Warm Ultrasonic Impact-Assisted Laser Metal Deposition
,”
ASME J. Manuf. Sci. Eng.
,
143
(
7
), p.
074501
.
14.
Tian
,
Q.
,
Guo
,
S.
,
Melder
,
E.
,
Bian
,
L.
, and
Guo
,
W.
,
2021
, “
Deep Learning-Based Data Fusion Method for In Situ Porosity Detection in Laser-Based Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
143
(
4
), p.
041011
.
15.
Vundru
,
C.
,
Singh
,
R.
,
Yan
,
W.
, and
Karagadde
,
S.
,
2020
, “
The Effect of Martensitic Transformation on the Evolution of Residual Stresses and Identification of the Critical Linear Mass Density in Direct Laser Metal Deposition-Based Repair
,”
ASME J. Manuf. Sci. Eng.
,
142
(
7
), p.
071002
.
16.
Dupont
,
J. N.
,
Stockdale
,
A. W.
,
Caizza
,
A.
, and
Esposito
,
A.
,
2013
, “
High-Temperature Corrosion Behavior of Alloy 600 and 622 Weld Claddings and Coextruded Coatings
,”
Weld. J.
,
92
(
7
), pp.
218
224
. https://www.lehigh.edu/energy/research/PDF/Materials
17.
Rozmus-Górnikowska
,
M.
, and
Blicharski
,
M.
,
2015
, “
Microsegregation and Precipitates in Inconel 625 Arc Weld Overlay Coatings on Boiler Pipes, Archives of Metallurgy and Materials
,”
Arch. Metall. Mater.
,
60
(
4
), pp.
2599
2606
.
18.
Salazar
,
M.
,
García
,
R.
,
López
,
V. H.
,
Galván-Martínez
,
R.
, and
Contreras
,
A.
,
2017
, “
Improvement of UNS S32205 Duplex Welds by GMAW and Controlled Magnetic Field for Offshore Pipelines and Flowlines Applications
,”
ASME J. Offshore Mech. Arct. Eng.
,
139
(
6
), p.
051302
.
19.
García-Rentería
,
M. A.
,
López-Morelos
,
V. H.
,
García-Hernández
,
R.
,
Dzib-Pérez
,
L.
,
García-Ocha
,
E. M.
, and
González-Sánchez
,
J.
,
2014
, “
Improvement of Localized Corrosion Resistance of AISI 2205 Duplex Stainless Steel Joints Made by Gas Metal Arc Welding Under Electromagnetic Interaction of Low Intensity
,”
Appl. Surf. Sci.
,
321
(
1
), pp.
252
260
.
20.
García-Rentería
,
M. A.
,
López Morelos
,
V. H.
,
García Hernández
,
R.
,
Curiel López
,
F.
, and
Lemus-Ruíz
,
J.
,
2013
, “
Effect on the Microstructure and Mechanical, Properties of the Electromagnetic Stirring During GMA Welding, of 2205 DSS Plates
,”
Mater. Sci. Forum
,
755
(
1
), pp.
61
68
. www.scientific.net/MSF.755.61
21.
Curiel
,
F. F.
,
García
,
R.
,
López
,
V. H.
, and
González-Sánchez
,
J.
,
2011
, “
Effect, of Magnetic Field Applied During Gas Metal Arc Welding on the, Resistance to Localised Corrosion of the Heat Affected Zone in AISI 304 Stainless Steel
,”
Corros. Sci.
,
53
(
7
), pp.
2393
2399
.
22.
Curiel
,
F. F.
,
García
,
R.
,
López
,
V. H.
,
García
,
M. A.
, and
Lemus
,
J.
,
2013
, “
Transmission Electron Microscopy in the Heat Affected Zone of an AISI 304 Austenitic Stainless Steel Welded With the Application of a Magnetic Field of Low Intensity
,”
Mater. Trans.
,
54
(
1
), pp.
122
125
.
23.
Villafuerte
,
J. C.
, and
Kerr
,
H. W.
,
1990
, “
Electromagnetic Stirring and Grain Refinement in Stainless-Steel GTA Welds
,”
Weld. J.
,
69
(
1
), pp.
S1
S13
. https://app.aws.org/wj/supplement/WJ_1990_01_s1.pdf
24.
Malinowski-Brodnicka
,
M.
,
den Ouden
,
G.
, and
Vink
,
W.J.P.
,
1990
, “
Effect of Electromagnetic Stirring on GTA Welds in Austenitic Stainless Steel
,”
Weld. J.
,
69
(
2
), pp.
52S
59S
. http://files.aws.org/wj/supplement/WJ_1990_02_s52.pdf
25.
Carpenter
,
K.
, and
Tabei
,
A.
,
2021
, “
Optimization of the Weld Setup in Magnetically Assisted Laser Welding by Thermo-Magnetic Modeling
,”
ASME J. Manuf. Sci. Eng.
,
143
(
3
), p.
034501
.
26.
Qi
,
L.
,
Li
,
F.
,
Zhang
,
Q.
,
Xu
,
Y.
,
Han
,
X.
, and
Li
,
Y.
,
2021
, “
Improvement of Single-Sided Resistance Spot Welding of Austenitic Stainless Steel Using Radial Magnetic Field
,”
ASME J. Manuf. Sci. Eng.
,
143
(
3
), p.
031004
.
27.
Matsuda
,
F.
,
Nakagawa
,
H.
,
Nakata
,
K.
, and
Ayani
,
R.
,
1978
, “
Effect of Electromagnetic Stirring on Weld Solidification Structure of Aluminum Alloys (Report I)—Investigation on GTA Weld Metal of Thin Sheet
,”
Trans. JWRI
,
7
(
1
), pp.
111
127
. https://ir.library.osaka-u.ac.jp/repo/ouka/all/8203/jwri07_01_111.pdf
28.
Sivaprasad
,
K.
, and
Raman
,
S. G.
,
2007
, “
Influence of Magnetic Arc Oscillation and Current Pulsing on Fatigue Behavior of Alloy 718 TIG Weldments
,”
Mater. Sci. Eng. A
,
448
(
1–2
), pp.
120
127
.
29.
Sivaprasad
,
K.
,
Raman
,
S. G.
,
Mastanaiah
,
P.
, and
Madhusudhan
,
G.
,
2006
, “
Influence of Magnetic Arc Oscillation and Current Pulsing on Microstructure and High Temperature Tensile Strength of Alloy 718 TIG Weldments
,”
Mater. Sci. Eng. A
,
428
(
1–2
), pp.
327
331
.
30.
McCracken
,
S.
,
Yu
,
X.
,
Lim
,
Y. C.
,
Farson
,
D. F.
, and
Babu
,
S. S.
,
2011
, “Grain Structure Refinement in Nickel Alloy Welds by Magnetic Arc Stirring,” ASME Paper No. PVP2011-57681.
31.
AWS
,
2012
, Specification for Bare Stainless Steel Welding Electrodes and Rods, 8th ed., American Welding Society, Miami, FL, Standard No. AWS A5.9/A5.9M.
32.
ASTM
,
2017
, Standard Test Method for Microindentation Hardness of Materials, ASTM International, West Conshohocken, PA, Standard No. E384.
33.
ASTM
,
2014
, Standard Test Methods for Bend Testing of Material for Ductility, ASTM International, West Conshohocken, PA, Standard No. E290.
34.
Kejelin
,
N. Z.
,
2012
, “Soldagem de revestimento de açoscomuns C-Mn comsuperliga a base de níquel Inconel 625.”
35.
Lippold
,
J. C.
,
2014
,
Welding Metallurgy and Weldability
,
John Wiley & Sons
,
Hoboken, NJ
.
36.
Kou
,
S.
,
2002
,
Welding Metallurgy
, 2nd ed.,
John Wiley & Sons
,
Hoboken, NJ
.
You do not currently have access to this content.