Abstract

Laser Powder Bed Fusion (LPBF) manufactured Al-5024 alloy has gained worldwide interest due to its ability to fabricate high-performance complex components. This work focuses on quantitative characterization and synergic optimization of the microhardness, tensile strength, and corrosion resistance of an LPBF manufactured Al-5024 alloy by optimization of heat treatment parameters. The effect of the isothermal heat treatment (IHT) process on the microstructure evolution, mechanical properties, and electrochemical properties of an LPBF-processed Al–4.2Mg–0.4Sc-0.2Zr alloy was systematically revealed. Results showed that superior tensile strength of 506.7 ± 10.4 MPa combined with inferior corrosion resistance was simultaneously obtained at a peak-aging condition. Based on microstructure observations by electron microscopy in backscattered mode (BSE) and transmission electron microscopy (TEM), the enhanced mechanical properties were attributed to the generation of a high number density (3.8 × 109/mm2) of grain interior precipitates, while the reduced corrosion resistance was related to the massive Al3(Sc,Zr) precipitates generated along grain boundaries. As aging time further increased, the size and spacing of the precipitates were increased, which blocked the corrosion path along grain boundaries and led to a reduction of mechanical properties and an enhancement of corrosion resistance. Unlike the expected synergistic improvement in mechanical properties and corrosion resistance, an opposite evolution tendency of mechanical properties and corrosion resistance of LPBF-processed Al-5024 alloy during heat treatment was revealed in this paper, and its intrinsic mechanism is further analyzed based on microstructure characterization.

References

1.
Tang
,
Z.
,
Jiang
,
F.
,
Long
,
M.
,
Jiang
,
J.
,
Liu
,
H.
, and
Tong
,
M.
,
2020
, “
Effect of Annealing Temperature on Microstructure, Mechanical Properties and Corrosion Behavior of Al-Mg-Mn-Sc-Zr Alloy
,”
Appl. Surf. Sci.
,
514
, p.
146081
.
2.
Buranova
,
Y.
,
Kulitskiy
,
V.
,
Peterlechner
,
M.
,
Mogucheva
,
A.
,
Kaibyshev
,
R.
,
Divinski
,
S. V.
, and
Wilde
,
G.
,
2017
, “
Al3(Sc,Zr)-Based Precipitates in Al–Mg Alloy: Effect of Severe Deformation
,”
Acta Mater.
,
124
, pp.
210
224
.
3.
Wang
,
Z.
,
Lin
,
X.
,
Kang
,
N.
,
Hu
,
Y.
,
Chen
,
J.
, and
Huang
,
W.
,
2020
, “
Strength-Ductility Synergy of Selective Laser Melted Al-Mg-Sc-Zr Alloy With a Heterogeneous Grain Structure
,”
Addit. Manuf.
,
34
, p.
101260
.
4.
Taendl
,
J.
,
Orthacker
,
A.
,
Amenitsch
,
H.
,
Kothleitner
,
G.
, and
Poletti
,
C.
,
2016
, “
Influence of the Degree of Scandium Supersaturation on the Precipitation Kinetics of Rapidly Solidified Al-Mg-Sc-Zr Alloys
,”
Acta Mater.
,
117
, pp.
43
50
.
5.
Barriobero-vila
,
P.
,
Vallejos
,
J. M.
,
Gussone
,
J.
,
Haubrich
,
J.
,
Kelm
,
K.
,
Stark
,
A.
,
Schell
,
N.
, and
Requena
,
G.
,
2021
, “
Interface-Mediated Twinning-Induced Plasticity in a Fine Hexagonal Microstructure Generated by Additive Manufacturing
,”
Adv. Mater.
,
33
(
52
), p.
2105096
.
6.
Wang
,
D.
,
Wang
,
Y.
,
Yang
,
Y.
,
Lu
,
J.
,
Xu
,
Z.
,
Li
,
S.
,
Lin
,
K.
, and
Zhang
,
D.
,
2019
, “
Research on Design Optimization and Manufacturing of Coating Pipes for Automobile Seal Based on Selective Laser Melting
,”
J. Mater. Process. Technol.
,
273
, pp.
121
130
.
7.
Gu
,
D.
,
Shi
,
X.
,
Poprawe
,
R.
,
Bourell
,
D. L.
,
Setchi
,
R.
, and
Zhu
,
J.
,
2021
, “
Material-Structure-Performance Integrated Laser-Metal Additive Manufacturing
,”
Science.
,
372
(
6545
), p.
eabg1487
.
8.
Tamura
,
S.
,
Matsumura
,
T.
,
Ezura
,
A.
, and
Mori
,
K.
,
2022
, “
Anisotropic Cutting Force Characteristics in Milling of Maraging Steel Processed Through Selective Laser Melting
,”
ASME J. Manuf. Sci. Eng.
,
144
(
3
), p.
031012
.
9.
Mazumder
,
J.
,
2022
, “
In Situ Monitoring of Optical Emission Spectra for Microscopic Pores in Metal Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
144
(
1
), p.
011006
.
10.
Wang
,
L.
, and
Henkel
,
D.
,
2021
, “
Pyramid Ensemble Convolutional Neural Network for Virtual Computed Tomography Image Prediction in a Selective Laser Melting Process
,”
ASME J. Manuf. Sci. Eng.
,
143
(
12
), p.
121003
.
11.
Kusoglu
,
I. M.
,
Gökce
,
B.
, and
Barcikowski
,
S.
,
2020
, “
Research Trends in Laser Powder Bed Fusion of Al Alloys Within the Last Decade
,”
Addit. Manuf.
,
36
, p.
101489
.
12.
Zhao
,
T.
,
Cai
,
W.
,
Dahmen
,
M.
,
Schaible
,
J.
,
Hong
,
C.
,
Gasser
,
A.
,
Weisheit
,
A.
, et al
,
2018
, “
Ageing Response of an Al-Mg-Mn-Sc-Zr Alloy Processed by Laser Metal Deposition in Thin-Wall Structures
,”
Vacuum
,
158
, pp.
121
125
.
13.
Jia
,
Q.
,
Rometsch
,
P.
,
Kürnsteiner
,
P.
,
Chao
,
Q.
,
Huang
,
A.
,
Weyland
,
M.
,
Bourgeois
,
L.
, and
Wu
,
X.
,
2019
, “
Selective Laser Melting of a High Strength Al-Mn-Sc Alloy: Alloy Design and Strengthening Mechanisms
,”
Acta Mater.
,
171
, pp.
108
118
.
14.
Schmidtke
,
K.
,
Palm
,
F.
,
Hawkins
,
A.
, and
Emmelmann
,
C.
,
2011
, “
Process and Mechanical Properties: Applicability of a Scandium Modified Al-Alloy for Laser Additive Manufacturing
,”
Phys. Procedia
,
12
(
PART 1
), pp.
369
374
.
15.
Spierings
,
A. B.
,
Dawson
,
K.
,
Heeling
,
T.
,
Uggowitzer
,
P. J.
,
Schäublin
,
R.
,
Palm
,
F.
, and
Wegener
,
K.
,
2017
, “
Microstructural Features of Sc- and Zr-Modified Al-Mg Alloys Processed by Selective Laser Melting
,”
Mater. Des.
,
115
, pp.
52
63
.
16.
Shi
,
Y.
,
Yang
,
K.
,
Kairy
,
S. K.
,
Palm
,
F.
,
Wu
,
X.
, and
Rometsch
,
P. A.
,
2018
, “
Effect of Platform Temperature on the Porosity, Microstructure and Mechanical Properties of an Al–Mg–Sc–Zr Alloy Fabricated by Selective Laser Melting
,”
Mater. Sci. Eng. A
,
732
, pp.
41
52
.
17.
Zhang
,
H.
,
Gu
,
D.
,
Dai
,
D.
,
Ma
,
C.
,
Li
,
Y.
,
Peng
,
R.
,
Li
,
S.
,
Liu
,
G.
, and
Yang
,
B.
,
2020
, “
Influence of Scanning Strategy and Parameter on Microstructural Feature, Residual Stress and Performance of Sc and Zr Modified Al–Mg Alloy Produced by Selective Laser Melting
,”
Mater. Sci. Eng. A
,
788
, p.
139593
.
18.
Kürnsteiner
,
P.
,
Bajaj
,
P.
,
Gupta
,
A.
,
Wilms
,
M. B.
,
Weisheit
,
A.
,
Li
,
X.
,
Leinenbach
,
C.
,
Gault
,
B.
,
Jägle
,
E. A.
, and
Raabe
,
D.
,
2020
, “
Control of Thermally Stable Core-Shell Nano-precipitates in Additively Manufactured Al-Sc-Zr Alloys
,”
Addit. Manuf.
,
32
, p.
100910
.
19.
Li
,
R.
,
Wang
,
M.
,
Li
,
Z.
,
Cao
,
P.
,
Yuan
,
T.
, and
Zhu
,
H.
,
2020
, “
Developing a High-Strength Al-Mg-Si-Sc-Zr Alloy for Selective Laser Melting: Crack-Inhibiting and Multiple Strengthening Mechanisms
,”
Acta Mater.
,
193
, pp.
83
98
.
20.
Lu
,
J.
,
Lin
,
X.
,
Kang
,
N.
,
Cao
,
Y.
,
Wang
,
Q.
, and
Huang
,
W.
,
2021
, “
Keyhole Mode Induced Simultaneous Improvement in Strength and Ductility of Sc Modified Al–Mn Alloy Manufactured by Selective Laser Melting
,”
Mater. Sci. Eng. A
,
811
, p.
141089
.
21.
Wang
,
Z.
,
Lin
,
X.
,
Tang
,
Y.
,
Kang
,
N.
,
Gao
,
X.
,
Shi
,
S.
, and
Huang
,
W.
,
2021
, “
Laser-Based Directed Energy Deposition of Novel Sc/Zr-Modified Al-Mg Alloys: Columnar-to-Equiaxed Transition and Aging Hardening Behavior
,”
J. Mater. Sci. Technol.
,
69
, pp.
168
179
.
22.
Zhu
,
Y.
,
Zhao
,
Y.
, and
Chen
,
B.
,
2022
, “
A Study on Sc- and Zr-Modified Al-Mg Alloys Processed by Selective Laser Melting
,”
Mater. Sci. Eng. A
,
833
, p.
142516
.
23.
Dong
,
Q.
,
Howells
,
A.
,
Lloyd
,
D. J.
,
Gallerneault
,
M.
, and
Fallah
,
V.
,
2020
, “
Effect of Solidification Cooling Rate on Kinetics of Continuous / Discontinuous Al3(Sc,Zr) Precipitation and the Subsequent Age-Hardening Response in Cold-Rolled AlMgScZr Sheets
,”
Mater. Sci. Eng. A
,
772
, p.
138693
.
24.
Spierings
,
A. B.
,
Dawson
,
K.
,
Uggowitzer
,
P. J.
, and
Wegener
,
K.
,
2018
, “
Influence of SLM Scan-Speed on Microstructure, Precipitation of Al3Sc Particles and Mechanical Properties in Sc- and Zr-Modified Al-Mg Alloys
,”
Mater. Des.
,
140
, pp.
134
143
.
25.
Li
,
R.
,
Chen
,
H.
,
Zhu
,
H.
,
Wang
,
M.
,
Chen
,
C.
, and
Yuan
,
T.
,
2019
, “
Effect of Aging Treatment on the Microstructure and Mechanical Properties of Al-3.02Mg-0.2Sc-0.1Zr Alloy Printed by Selective Laser Melting
,”
Mater. Des.
,
168
, p.
107668
.
26.
Spierings
,
A. B.
,
Dawson
,
K.
,
Kern
,
K.
,
Palm
,
F.
, and
Wegener
,
K.
,
2017
, “
SLM-Processed Sc- and Zr- Modified Al-Mg Alloy: Mechanical Properties and Microstructural Effects of Heat Treatment
,”
Mater. Sci. Eng. A
,
701
, pp.
264
273
.
27.
Yang
,
Y.
,
Chen
,
Y.
,
Zhang
,
J.
,
Gu
,
X.
,
Qin
,
P.
,
Dai
,
N.
,
Li
,
X.
,
Kruth
,
J.-P.
, and
Zhang
,
L.-C.
,
2018
, “
Improved Corrosion Behavior of Ultrafine-Grained Eutectic Al-12Si Alloy Produced by Selective Laser Melting
,”
Mater. Des.
,
146
, pp.
239
248
.
28.
Fathi
,
P.
,
Rafieazad
,
M.
,
Duan
,
X.
,
Mohammadi
,
M.
, and
Nasiri
,
A. M.
,
2019
, “
On Microstructure and Corrosion Behaviour of AlSi10Mg Alloy With Low Surface Roughness Fabricated by Direct Metal Laser Sintering
,”
Corros. Sci.
,
157
, pp.
126
145
.
29.
Zhang
,
H.
,
Gu
,
D.
,
Dai
,
D.
,
Ma
,
C.
,
Li
,
Y.
,
Cao
,
M.
, and
Li
,
S.
,
2020
, “
Influence of Heat Treatment on Corrosion Behavior of Rare Earth Element Sc Modified Al-Mg Alloy Processed by Selective Laser Melting
,”
Appl. Surf. Sci.
,
509
, p.
145330
.
30.
Ralston
,
K. D.
,
Fabijanic
,
D.
, and
Birbilis
,
N.
,
2011
, “
Effect of Grain Size on Corrosion of High Purity Aluminium
,”
Electrochim. Acta
,
56
(
4
), pp.
1729
1736
.
31.
Brewick
,
P. T.
,
Kota
,
N.
,
Lewis
,
A. C.
,
DeGiorgi
,
V. G.
,
Geltmacher
,
A. B.
, and
Qidwai
,
S. M.
,
2017
, “
Microstructure-Sensitive Modeling of Pitting Corrosion: Effect of the Crystallographic Orientation
,”
Corros. Sci.
,
129
, pp.
54
69
.
32.
Røyset
,
J.
, and
Ryum
,
N.
,
2005
, “
Scandium in Aluminium Alloys
,”
Int. Mater. Rev.
,
50
(
1
), pp.
19
44
.
33.
Zou
,
Y.
,
Liu
,
Q.
,
Jia
,
Z.
,
Xing
,
Y.
,
Ding
,
L.
, and
Wang
,
X.
,
2017
, “
The Intergranular Corrosion Behavior of 6000-Series Alloys With Different Mg/Si and Cu Content
,”
Appl. Surf. Sci.
,
405
, pp.
489
496
.
34.
Croteau
,
J. R.
,
Griffiths
,
S.
,
Rossell
,
M. D.
,
Leinenbach
,
C.
,
Kenel
,
C.
,
Jansen
,
V.
,
Seidman
,
D. N.
,
Dunand
,
D. C.
, and
Vo
,
N. Q.
,
2018
, “
Microstructure and Mechanical Properties of Al-Mg-Zr Alloys Processed by Selective Laser Melting
,”
Acta Mater.
,
153
, pp.
35
44
.
35.
Fuller
,
C. B.
,
Murray
,
J. L.
, and
Seidman
,
D. N.
,
2005
, “
Temporal Evolution of the Nanostructure of Al(Sc,Zr) Alloys: Part i—Chemical Compositions of Al3(Sc1-XZrx) Precipitates
,”
Acta Mater.
,
53
(
20
), pp.
5401
5413
.
36.
Tolley
,
A.
,
Radmilovic
,
V.
, and
Dahmen
,
U.
,
2005
, “
Segregation in Al3(Sc,Zr) Precipitates in Al-Sc-Zr Alloys
,”
Scr. Mater.
,
52
(
7
), pp.
621
625
.
37.
He
,
P.
,
Webster
,
R. F.
,
Yakubov
,
V.
,
Kong
,
H.
,
Yang
,
Q.
,
Huang
,
S.
,
Ferry
,
M.
,
Kruzic
,
J. J.
, and
Li
,
X.
,
2021
, “
Fatigue and Dynamic Aging Behavior of a High Strength Al-5024 Alloy Fabricated by Laser Powder Bed Fusion Additive Manufacturing
,”
Acta Mater.
,
220
, p.
117312
.
38.
Cai
,
Y.
,
Tian
,
C.
,
Fu
,
S.
,
Han
,
G.
,
Cui
,
C.
, and
Zhang
,
Q.
,
2015
, “
Influence of Γ` Precipitates on Portevin-Le Chatelier Effect of NI-Based Superalloys
,”
Mater. Sci. Eng. A
,
638
, pp.
314
321
.
39.
Pellissier
,
G.
, and
Purdy
,
S.
,
1972
,
Stereology and Quantitative Metallography
,
ASTM International
,
West Conshohocken, PA
.
40.
Kelly
,
P. M.
,
Jostsons
,
A.
,
Blake
,
R. G.
, and
Napier
,
J. G.
,
1975
, “
The Determination of Foil Thickness by Scanning Transmission Electron Microscopy
,”
Phys. Status Solidi
,
31
(
2
), pp.
771
780
.
41.
Lagerpusch
,
U.
,
Mohles
,
V.
,
Baither
,
D.
,
Anczykowski
,
B.
, and
Nembach
,
E.
,
2000
, “
Double Strengthening of Copper by Dissolved Gold-Atoms and by Incoherent SiO2-Particles: How Do the Two Strengthening Contributions Superimpose?
,”
Acta Mater.
,
48
(
14
), pp.
3647
3656
.
42.
Schlesier
,
C.
, and
Nembach
,
E.
,
1989
, “
Precise Transmission Electron Microscopy Determination of the Size and the Volume Fraction of Precipitates, as Exemplified by Nimonic PE16
,”
Mater. Sci. Eng. A
,
119
(
C
), pp.
199
210
.
43.
Chen
,
Y.
,
Zhang
,
J.
,
Gu
,
X.
,
Dai
,
N.
,
Qin
,
P.
, and
Zhang
,
L. C.
,
2018
, “
Distinction of Corrosion Resistance of Selective Laser Melted Al-12Si Alloy on Different Planes
,”
J. Alloys Compd.
,
747
, pp.
648
658
.
44.
Li
,
C.
,
Pan
,
Q.
,
Shi
,
Y.
,
Wang
,
Y.
, and
Li
,
B.
,
2014
, “
Influence of Aging Temperature on Corrosion Behavior of Al-Zn-Mg-Sc-Zr Alloy
,”
Mater. Des.
,
55
, pp.
551
559
.
45.
Jorcin
,
J. B.
,
Orazem
,
M. E.
,
Pébère
,
N.
, and
Tribollet
,
B.
,
2006
, “
CPE Analysis by Local Electrochemical Impedance Spectroscopy
,”
Electrochim. Acta
,
55
(
8–9
), pp.
1473
1479
.
46.
Orazem
,
M. E.
,
Pébère
,
N.
, and
Tribollet
,
B.
,
2006
, “
Enhanced Graphical Representation of Electrochemical Impedance Data
,”
J. Electrochem. Soc.
,
153
(
4
), p.
B129
.
47.
Klein
,
J. C.
, and
Hercules
,
D. M.
,
1983
, “
Surface Characterization of Model Urushibara Catalysts
,”
J. Catal.
,
82
(
2
), pp.
424
441
.
48.
Barr
,
T. L.
,
1983
, “
An XPS Study of Si as It Occurs in Adsorbents, Catalysts, and Thin Films
,”
Appl. Surf. Sci.
,
15
(
1–4
), pp.
1
35
.
49.
Rueda
,
F.
,
Mendialdua
,
J.
,
Rodriguez
,
A.
,
Casanova
,
R.
,
Barbaux
,
Y.
,
Gengembre
,
L.
, and
Jalowiecki
,
L.
,
1996
, “
Characterization of Venezuelan Laterites by X-Ray Photoelectron Spectroscopy
,”
J. Electron Spectros. Relat. Phenomena
,
82
(
3
), pp.
135
143
.
50.
Kong
,
D.
,
Ni
,
X.
,
Dong
,
C.
,
Zhang
,
L.
,
Man
,
C.
,
Yao
,
J.
,
Xiao
,
K.
, and
Li
,
X.
,
2018
, “
Heat Treatment Effect on the Microstructure and Corrosion Behavior of 316L Stainless Steel Fabricated by Selective Laser Melting for Proton Exchange Membrane Fuel Cells
,”
Electrochim. Acta
,
276
, pp.
293
303
.
51.
Norman
,
A. F.
,
Prangnell
,
P. B.
, and
McEwen
,
R. S.
,
1998
, “
The Solidification Behaviour of Dilute Aluminium-Scandium Alloys
,”
Acta Mater.
,
46
(
16
), pp.
5715
5732
.
52.
Zhao
,
H.
,
De Geuser
,
F.
,
Kwiatkowski da Silva
,
A.
,
Szczepaniak
,
A.
,
Gault
,
B.
,
Ponge
,
D.
, and
Raabe
,
D.
,
2018
, “
Segregation Assisted Grain Boundary Precipitation in a Model Al-Zn-Mg-Cu Alloy
,”
Acta Mater.
,
156
, pp.
318
329
.
53.
Wang
,
Z.
,
Li
,
H.
,
Miao
,
F.
,
Sun
,
W.
,
Fang
,
B.
,
Song
,
R.
, and
Zheng
,
Z.
,
2014
, “
Improving the Intergranular Corrosion Resistance of Al-Mg-Si-Cu Alloys Without Strength Loss by a Two-Step Aging Treatment
,”
Mater. Sci. Eng. A
,
590
, pp.
267
273
.
54.
Deng
,
Y.
,
Yin
,
Z.
,
Zhao
,
K.
,
Duan
,
J.
,
Hu
,
J.
, and
He
,
Z.
,
2012
, “
Effects of Sc and Zr Microalloying Additions and Aging Time at 120 °C on the Corrosion Behavior of an Al-Zn-Mg Alloy
,”
Corros. Sci.
,
65
, pp.
288
298
.
55.
Marquis
,
E. A.
, and
Seidman
,
D. N.
,
2005
, “
Coarsening Kinetics of Nanoscale Al3Sc Precipitates in an Al-Mg-Sc Alloy
,”
Acta Mater.
,
53
(
15
), pp.
4259
4268
.
56.
Seidman
,
D.
,
Marquis
,
E.
, and
Dunand
,
D.
,
2002
, “
Precipitation Strengthening at Ambient and Elevated Temperatures of Heat-Treatable Al (Sc) Alloys
,”
Acta Mater.
,
50
(
16
), pp.
4021
4035
.
57.
Kendig
,
K. L.
, and
Miracle
,
D. B.
,
2002
, “
Strengthening Mechanisms of an Al-Mg-Sc-Zr Alloy
,”
Acta Mater.
,
50
(
16
), pp.
4165
4175
.
58.
Cavanaugh
,
M. K.
,
Birbilis
,
N.
,
Buchheit
,
R. G.
, and
Bovard
,
F.
,
2007
, “
Investigating Localized Corrosion Susceptibility Arising From Sc Containing Intermetallic Al3Sc in High Strength Al-Alloys
,”
Scr. Mater.
,
56
(
11
), pp.
995
998
.
59.
Ahmad
,
Z.
,
Ul-Hamid
,
A.
, and
B.j
,
A. A.
,
2001
, “
The Corrosion Behavior of Scandium Alloyed Al 5052 in Neutral Sodium Chloride Solution
,”
Corros. Sci.
,
43
(
7
), pp.
1227
1243
.
60.
Wang
,
D.
,
Yang
,
D.
,
Zhang
,
D.
,
Li
,
K.
,
Gao
,
L.
, and
Lin
,
T.
,
2015
, “
Electrochemical and DFT Studies of Quinoline Derivatives on Corrosion Inhibition of AA5052 Aluminium Alloy in NaCl Solution
,”
Appl. Surf. Sci.
,
357
, pp.
2176
2183
.
61.
Cruz
,
V.
,
Chao
,
Q.
,
Birbilis
,
N.
,
Fabijanic
,
D.
,
Hodgson
,
P. D.
, and
Thomas
,
S.
,
2020
, “
Electrochemical Studies on the Effect of Residual Stress on the Corrosion of 316L Manufactured by Selective Laser Melting
,”
Corros. Sci.
,
164
, p.
108314
.
62.
Zhu
,
Y.
,
Ji
,
Q. Q.
, and
Jin
,
M.
,
2018
, “
Effects of Non-isothermal Aging Process on Mechanical Properties and Corrosion Resistance of Al–Mg–Si Aluminum Alloy
,”
Mater. Corros.
,
69
(
5
), pp.
634
640
.
63.
Xuehong
,
X.
,
Deng
,
Y.
,
Shuiqing
,
C.
, and
Xiaobin
,
G.
,
2020
, “
Effect of Interrupted Ageing Treatment on the Mechanical Properties and Intergranular Corrosion Behavior of Al-Mg-Si Alloys
,”
J. Mater. Res. Technol.
,
9
(
1
), pp.
230
241
.
64.
Mei
,
L.
,
Chen
,
X. P.
,
Wang
,
C.
,
Xie
,
J.
, and
Liu
,
Q.
,
2021
, “
Good Combination of Strength and Corrosion Resistance in an Al-Cu-Mg Alloy Processed by a Short-Cycled Thermomechanical Treatment
,”
Mater. Charact.
,
181
, p.
111469
.
You do not currently have access to this content.