Abstract

This paper presents a systematic study on using the burst mode ablation to limit the heat-affected zone (HAZ) while maintaining a high ablation efficiency using a high-power industrial picosecond laser with burst fluence larger than 10 J/cm2. An extended three-dimensional two-temperature model (3D-TTM) was employed to study the mechanism of the HAZ development and to predict the ablation efficiency with experimental validation. The essentiality of including the lattice heat conduction to predict accurate HAZ was discussed. The effect of the number of pulses per burst and pulse-to-pulse separation time was investigated. The optimal number of pulses per burst was obtained by using the 3D-TTM for copper and stainless steel. The 3D-TTM suggested that by using the optimal number of pulses per burst, a maximum reduction of 77% and 61% in HAZ could be achieved for copper and stainless steel respectively. And the corresponding ablation efficiency will be increased by 24% and 163% for copper and stainless steel at the same time. This study showed that burst mode laser machining at high fluence is an effective way of increasing efficiency while limiting the HAZ.

References

1.
Lei
,
S.
,
Zhao
,
X.
,
Yu
,
X.
,
Hu
,
A.
,
Vukelic
,
S.
,
Jun
,
M. B. G.
,
Joe
,
H.-E.
,
Yao
,
Y. L.
, and
Shin
,
Y. C.
,
2020
, “
Ultrafast Laser Applications in Manufacturing Processes: A State of the Art Review
,”
ASME J. Manuf. Sci. Eng.
,
142
(
3
), p.
031005
.
2.
Kerse
,
C.
,
Kalaycloĝ Lu
,
H.
,
Elahi
,
P.
,
Çetin
,
B.
,
Kesim
,
D. K.
,
Akçaalan
,
Ö
,
Yavaş
,
S.
, et al
,
2016
, “
Ablation-Cooled Material Removal With Ultrafast Bursts of Pulses
,”
Nature
,
537
(
7618
), pp.
84
88
.
3.
Hu
,
W.
,
Shin
,
Y. C.
, and
King
,
G.
,
2010
, “
Modeling of Multi-burst Mode Pico-Second Laser Ablation for Improved Material Removal Rate
,”
Appl. Phys. A: Mater. Sci. Process.
,
98
(
2
), pp.
407
415
.
4.
Zhang
,
Y.
,
Li
,
J.
,
Yang
,
R.
,
Liu
,
T.
, and
Yan
,
Y.
,
2019
, “
Analysis of Kerf Quality on Ultrafast Laser Cutting of Anode Material for Lithium-Ion Battery
,”
Opt. Lasers Eng.
,
118
, pp.
14
21
.
5.
Hirayama
,
Y.
, and
Obara
,
M.
,
2005
, “
Heat-Affected Zone and Ablation Rate of Copper Ablated With Femtosecond Laser
,”
J. Appl. Phys.
,
97
(
6
), p.
064903
.
6.
Neuenschwander
,
B.
,
Jaeggi
,
B.
,
Foerster
,
D. J.
,
Kramer
,
T.
, and
Remund
,
S.
,
2019
, “
Influence of the Burst Mode Onto the Specific Removal Rate for Metals and Semiconductors
,”
J. Laser Appl.
,
31
(
2
), p.
022203
.
7.
Domke
,
M.
,
Matylitsky
,
V.
, and
Stroj
,
S.
,
2020
, “
Surface Ablation Efficiency and Quality of Fs Lasers in Single-Pulse Mode, Fs Lasers in Burst Mode, and Ns Lasers
,”
Appl. Surf. Sci.
,
505
, p.
144594
.
8.
Žemaitis
,
A.
,
Gečys
,
P.
,
Barkauskas
,
M.
,
Račiukaitis
,
G.
, and
Gedvilas
,
M.
,
2019
, “
Highly-Efficient Laser Ablation of Copper by Bursts of Ultrashort Tuneable (Fs-Ps) Pulses
,”
Sci. Rep.
,
9
(
1
), pp.
1
8
.
9.
Hirsiger
,
T.
,
Gafner
,
M.
,
Remund
,
S. M.
,
Chaja
,
M. W.
,
Urniezius
,
A.
,
Butkus
,
S.
, and
Neuenschwander
,
B.
,
2020
, “
Machining Metals and Silicon With GHz Bursts: Surprising Tremendous Reduction of the Specific Removal Rate for Surface Texturing Applications
,”
Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XXV
,
G.
Račiukaitis
,
C.
Molpeceres
,
A.
Narazaki
, and
J.
Qiao
, eds.,
SPIE-Intl Soc Optical Eng
, p.
27
.
10.
Neuenschwander
,
B.
,
Jaeggi
,
B.
,
Zavedeev
,
E. V.
,
Arutyunyan
,
N. R.
, and
Pimenov
,
S. M.
,
2019
, “
Heat Accumulation Effects in Laser Processing of Diamond-Like Nanocomposite Films With Bursts of Femtosecond Pulses
,”
J. Appl. Phys.
,
126
(
11
), p.
115301
.
11.
Neuenschwander
,
B. B.
,
Kramer
,
T.
,
Lauer
,
B.
, and
Jaeggi
,
B.
,
2015
, “
Burst Mode With Ps-and Fs-Pulses: Influence on the Removal Rate, Surface Quality, and Heat Accumulation
,”
Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XX
,
San Francisco, CA
,
Feb. 9–12
, Vol. 9350, p. 93500U.
12.
Jaeggi
,
B.
,
Remund
,
S.
,
Zhang
,
Y.
,
Kramer
,
T.
, and
Neuenschwander
,
B.
,
2017
, “
Optimizing the Specific Removal Rate With the Burst Mode Under Varying Conditions
,”
J. Laser Micro/Nanoeng.
,
12
(
3
), pp.
258
266
.
13.
Hodgson
,
N.
,
Allegre
,
H.
,
Caprara
,
A.
,
Starodoumov
,
A.
, and
Bettencourt
,
S.
,
2021
, “
Efficiency of Ultrafast Laser Ablation in Burst Mode as a Function of Intra-Burst Repetition Rate and Pulse Fluence
,”
Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XXI
,
online
,
Mar. 6–11
.
14.
Metzner
,
D.
,
Lickschat
,
P.
, and
Weißmantel
,
S.
,
2021
, “
Optimization of the Ablation Process Using Ultrashort Pulsed Laser Radiation in Different Burst Modes
,”
J. Laser. Appl.
,
33
(
1
), p.
012057
.
15.
Lickschat
,
P.
,
Metzner
,
D.
, and
Weißmantel
,
S.
,
2021
, “
Burst Mode Ablation of Stainless Steel With Tunable Ultrashort Laser Pulses
,”
J. Laser. Appl.
,
33
(
2
), p.
022005
.
16.
Wang
,
S. Y.
,
Ren
,
Y.
,
Cheng
,
C. W.
,
Chen
,
J. K.
, and
Tzou
,
D. Y.
,
2013
, “
Micromachining of Copper by Femtosecond Laser Pulses
,”
Appl. Surf. Sci.
,
265
, pp.
302
308
.
17.
Taylor
,
L. L.
,
Scott
,
R. E.
, and
Qiao
,
J.
,
2018
, “
Integrating Two-Temperature and Classical Heat Accumulation Models to Predict Femtosecond Laser Processing of Silicon
,”
Opt. Mater. Express
,
8
(
3
), p.
648
.
18.
Abdelmalek
,
A.
,
Bedrane
,
Z.
, and
Amara
,
E. H.
,
2018
, “
Thermal and Non-Thermal Explosion in Metals Ablation by Femtosecond Laser Pulse: Classical Approach of the Two Temperature Model
,”
J. Phys. Conf. Ser.
,
1
, p.
12012
.
19.
Zhao
,
X.
,
Cao
,
Y.
,
Nian
,
Q.
,
Shin
,
Y. C.
, and
Cheng
,
G.
,
2014
, “
Precise Selective Scribing of Thin-Film Solar Cells by a Picosecond Laser
,”
Appl. Phys. A: Mater. Sci. Process.
,
116
(
2
), pp.
671
681
.
20.
Venkatakrishnan
,
K.
,
Tan
,
B.
,
Stanley
,
P.
, and
Sivakumar
,
N. R.
,
2002
, “
The Effect of Polarization on Ultrashort Pulsed Laser Ablation of Thin Metal Films
,”
J. Appl. Phys.
,
92
(
3
), pp.
1604
1607
.
21.
Anisimov
,
S. I.
,
Kapeliovich
,
B. L.
, and
Perelman
,
T. L.
,
1974
, “
Electron Emission From Metal Surfaces Exposed to Ultrashort Laser Pulses
,”
Zh. Eksp. Teor. Fiz.
,
66
(
2
), pp.
375
377
.
22.
Corkum
,
P. B.
,
Brunel
,
F.
,
Sherman
,
N. K.
, and
Srinivasan-Rao
,
T.
,
1988
, “
Thermal Response of Metals to Ultrashort-Pulse Laser Excitation
,”
Phys. Rev. Lett.
,
61
(
25
), pp.
2886
2889
.
23.
Sherman
,
N. K.
,
Brunel
,
F.
,
Corkum
,
P. B.
, and
Hegmann
,
F. A.
,
1989
, “
Transient Response of Metals to Ultrashort Pulse Excitation
,”
Opt. Eng.
,
28
(
10
), pp.
1114
1121
. .
24.
More
,
R. M.
,
Warren
,
K. H.
,
Young
,
D. A.
, and
Zimmerman
,
G. B.
,
1988
, “
A New Quotidian Equation of State (QEOS) for Hot Dense Matter
,”
Phys. Fluids
,
31
(
10
), p.
3059
.
25.
Lee
,
Y. T.
, and
More
,
R. M.
,
1984
, “
An Electron Conductivity Model for Dense Plasmas
,”
Phys. Fluids
,
27
(
5
), p.
1273
.
26.
Wu
,
B.
, and
Shin
,
Y. C.
,
2007
, “
A Simple Model for High Fluence Ultra-Short Pulsed Laser Metal Ablation
,”
Appl. Surf. Sci.
,
253
(
8
), pp.
4079
4084
.
27.
Jia
,
X.
, and
Zhao
,
X.
,
2019
, “
Numerical Study of Material Decomposition in Ultrafast Laser Interaction With Metals
,”
Appl. Surf. Sci.
,
463
, pp.
781
790
.
28.
Laville
,
S.
,
Vidal
,
F.
,
Johnston
,
T. W.
,
Barthé
,
O.
,
Chaker
,
M.
,
Le Drogoff
,
B.
,
Margot
,
J.
, and
Sabsabi
,
M.
,
2002
, “
Fluid Modeling of the Laser Ablation Depth as a Function of the Pulse Duration for Conductors
,”
Phys. Rev. E
,
66
(
6
), p.
7
.
29.
Pedrotti
,
F.
,
Pedrotti
,
L.
, and
Pedrotti
,
L.
,
2018
,
Introduction to Optics
,
Cambridge University Press
,
Cambridge, UK
, pp.
535
548
.
30.
Suslova
,
A.
, and
Hassanein
,
A.
,
2017
, “
Simulation of Femtosecond Laser Absorption by Metallic Targets and Their Thermal Evolution
,”
Laser Part. Beams
,
35
(
3
), pp.
415
428
.
31.
Blairs
,
S.
, and
Abbasi
,
M. H.
,
2006
, “
Correlation Between Surface Tension and Critical Temperatures of Liquid Metals
,”
J. Colloid Interface Sci.
,
304
(
2
), pp.
549
553
.
32.
Haynes
,
W.M.
,
Lide
,
D.R.
, and
Bruno
,
T.J.
,
2016
,
CRC Handbook of Chemistry and Physics
,
CRC Press
,
Boca Raton, FL
, pp.
4
10
.
33.
Rai
,
R.
,
Elmer
,
J. W.
,
Palmer
,
T. A.
, and
DebRoy
,
T.
,
2007
, “
Heat Transfer and Fluid Flow During Keyhole Mode Laser Welding of Tantalum, Ti–6Al–4 V, 304L Stainless Steel and Vanadium
,”
J. Phys. D: Appl. Phys.
,
40
(
18
), pp.
5753
5766
.
34.
Castrejón-Sánchez
,
V. H.
,
Solís
,
A. C.
,
López
,
R.
,
Encarnación-Gomez
,
C.
,
Morales
,
F. M.
,
Vargas
,
O. S.
,
Mastache-Mastache
,
J. E.
, and
Sánchez
,
G. V.
,
2019
, “
Thermal Oxidation of Copper Over a Broad Temperature Range: Towards the Formation of Cupric Oxide (CuO)
,”
Mater. Res. Express
,
6
(
7
), p.
075909
.
35.
Sheng
,
P. S.
, and
Joshi
,
V. S.
,
1995
, “
Analysis of Heat-Affected Zone Formation for Laser Cutting of Stainless Steel
,”
J. Mater. Process. Technol.
,
53
(
3–4
), pp.
879
892
.
36.
Samsonov
,
G.
,
1973
,
The Oxide Handbook
,
Springer
,
New York
, pp.
224
262
.
You do not currently have access to this content.