Abstract

Interactions of wear debris at the tool-workpiece interface in micro-grinding are quite random which leads to considerable variability in the working life of similar tools. It is not possible to capture the effect of wear debris entrapment on process signals using the available physics-based model, which makes it difficult to identify the tool life stages. The present study highlights the wear pattern and life stages of a polycrystalline diamond tool (PCD) during micro-grinding of BK7 glass. Based on the time and frequency domain cutting force features and tool surface morphology, life of a typical PCD tool could be divided into three stages viz., abrasion stage (0–23% of total tool life), loading stage (23–77% of total tool life), and chipping stage (77–100% of total tool life). A machine learning model utilizing support vector machine (SVM) could predict the life stages of a tool with a prediction accuracy of around 80.5%, and the wear pattern of a new tool coming into service becomes more deterministic on using more datasets for model training. A new modified textured PCD tool, which provided better tool-work interaction and improved debris disposal, shows little variation in cutting force features across many similar design tools which enabled identifying the life stages with higher confidence. Prognosis of tool redressing criterion enabled timely redressing of the tool which led to refined tool surface condition, such as increased number of available chip pockets, greater protrusion height of the abrasives, and lowered roughness of the machined surface.

References

1.
Pratap
,
A.
,
Patra
,
K.
, and
Dyakonov
,
A. A.
,
2019
, “
A Comprehensive Review of Micro-Grinding: Emphasis on Toolings, Performance Analysis, Modeling Techniques, and Future Research Directions
,”
Int. J. Adv. Manuf. Technol.
,
104
(
1–4
), pp.
63
102
.
2.
Pratap
,
A.
, and
Patra
,
K.
,
2022
, “
Analytical Cutting Force Modeling of Micro-Slot Grinding Considering Tool-Workpiece Interactions on Both Primary and Secondary Tool Surfaces
,”
ASME J. Manuf. Sci. Eng.
,
144
(
2
), p.
021001
.
3.
Perveen
,
A.
,
San
,
W. Y.
, and
Rahman
,
M.
,
2012
, “
Fabrication of Different Geometry Cutting Tools and Their Effect on the Vertical Micro-Grinding of BK7 Glass
,”
Int. J. Adv. Manuf. Technol.
,
61
(
1–4
), pp.
101
115
.
4.
Wen
,
X.
, and
Cheng
,
J.
,
2019
, “
Experimental Study of a Specially Designed Diamond Micro Discontinuous Grinding Tool
,”
Int. J. Adv. Manuf. Technol.
,
102
(
9–12
), pp.
3341
3356
.
5.
Pratap
,
A.
,
Patra
,
K.
, and
Dyakonov
,
A. A.
,
2018
, “
On-Machine Texturing of PCD Micro-Tools for Dry Micro-Slot Grinding of BK7 Glass
,”
Precis. Eng.
,
55
, pp.
491
502
.
6.
Pratap
,
A.
,
Patra
,
K.
, and
Dyakonov
,
A. A.
,
2019
, “
Experimental Analysis of Ductile-Brittle Transitions for Parallel and Intersecting Micro-Slot Grinding in BK-7 Glass
,”
Ceram. Int.
,
45
(
8
), pp.
11013
11026
.
7.
Bhuiyan
,
M. S. H.
, and
Choudhury
,
I. A.
,
2014
, Review of Sensor Applications in Tool Condition Monitoring in Machining.
8.
Perveen
,
A.
,
Wong
,
Y. S.
, and
Rahman
,
M.
,
2011
, “
Characterisation and Online Monitoring of Wear Behaviour of On-Machine Fabricated PCD Micro-Tool While Vertical Micro-Grinding of BK7 Glass
,”
Int. J. Abras. Technol.
,
4
(
4
), pp.
304
324
.
9.
Lee
,
P.-H.
,
Kim
,
D. H.
,
Baek
,
D. S.
,
Nam
,
J. S.
, and
Lee
,
S. W.
,
2014
, “
A Study on Tool Condition Monitoring and Diagnosis of Micro-Grinding Process Based on Feature Extraction From Force Data
,”
Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf.
,
229
(
8
), pp.
1472
1478
.
10.
Lu
,
Y.
,
Rajora
,
M.
,
Zou
,
P.
, and
Liang
,
S. Y.
,
2017
, “
Physics-Embedded Machine Learning: Case Study With Electrochemical Micro-Machining
,”
Machines
,
5
(
1
), pp.
1
11
.
11.
Rimpault
,
X.
,
Chatelain
,
J. F.
,
Klemberg-Sapieha
,
J. E.
, and
Balazinski
,
M.
,
2017
, “
Tool Wear and Surface Quality Assessment of CFRP Trimming Using Fractal Analyses of the Cutting Force Signals
,”
CIRP J. Manuf. Sci. Technol.
,
16
, pp.
72
80
.
12.
Wu
,
D.
,
Jennings
,
C.
,
Terpenny
,
J.
,
Kumara
,
S.
, and
Gao
,
R. X.
,
2018
, “
Cloud-Based Parallel Machine Learning for Tool Wear Prediction
,”
ASME J. Manuf. Sci. Eng.
,
140
(
4
), p.
041005
.
13.
Feng
,
W.
,
Guo
,
J.
,
Yan
,
W.
,
Wu
,
H.
,
Wan
,
Y. C.
, and
Wang
,
X.
,
2020
, “
Underwater Laser Micro-Milling of Fine-Grained Aluminium and the Process Modelling by Machine Learning
,”
J. Micromechanics Microeng.
,
30
(
4
),
045011
.
14.
Nametala
,
C. A. L.
,
Souza
,
A. M.
,
Pereira Júnior
,
B. R.
, and
da Silva
,
E. J.
,
2020
, “
A Simulator Based on Artificial Neural Networks and NSGA-II for Prediction and Optimization of the Grinding Process of Superalloys With High Performance Grinding Wheels
,”
CIRP J. Manuf. Sci. Technol.
,
30
, pp.
157
173
.
15.
Yang
,
Y.
,
Hao
,
B.
,
Hao
,
X.
,
Li
,
L.
,
Chen
,
N.
,
Xu
,
T.
,
Aqib
,
K. M.
, and
He
,
N.
,
2020
, “
A Novel Tool (Single-Flute) Condition Monitoring Method for End Milling Process Based on Intelligent Processing of Milling Force Data by Machine Learning Algorithms
,”
Int. J. Precis. Eng. Manuf.
,
21
(
11
), pp.
2159
2171
.
16.
Bustillo
,
A.
,
Reis
,
R.
,
Machado
,
A. R.
, and
Pimenov
,
D. Y.
,
2020
, “
Improving the Accuracy of Machine-Learning Models With Data From Machine Test Repetitions
,”
J. Intell. Manuf.
,
33
, pp.
203
221
.
17.
Varghese
,
A.
,
Kulkarni
,
V.
, and
Joshi
,
S. S.
,
2021
, “
Tool Life Stage Prediction in Micro-Milling From Force Signal Analysis Using Machine Learning Methods
,”
ASME J. Manuf. Sci. Eng.
,
143
(
5
), p.
054501
.
18.
Twardowski
,
P.
,
Tabaszewski
,
M.
,
Wiciak-Pikuła
,
M.
, and
Felusiak-Czyryca
,
A.
,
2021
, “
Identification of Tool Wear Using Acoustic Emission Signal and Machine Learning Methods
,”
Precis. Eng.
,
72
, pp.
738
744
.
19.
Abubakr
,
M.
,
Hassan
,
M. A.
,
Krolczyk
,
G. M.
,
Khanna
,
N.
, and
Hegab
,
H.
,
2021
, “
Sensors Selection for Tool Failure Detection During Machining Processes: A Simple Accurate Classification Model
,”
CIRP J. Manuf. Sci. Technol.
,
32
, pp.
108
119
.
20.
Kuntoğlu
,
M.
,
Aslan
,
A.
,
Pimenov
,
D. Y.
,
Usca
,
ÜA
,
Salur
,
E.
,
Gupta
,
M. K.
,
Mikolajczyk
,
T.
,
Giasin
,
K.
,
Kapłonek
,
W.
, and
Sharma
,
S.
,
2021
, “
A Review of Indirect Tool Condition Monitoring Systems and Decision-Making Methods in Turning: Critical Analysis and Trends
,”
Sensors
,
21
(
1
), pp.
1
33
.
21.
Pratap
,
A.
, and
Patra
,
K.
,
2020
, “
Combined Effects of Tool Surface Texturing, Cutting Parameters and Minimum Quantity Lubrication (MQL) Pressure on Micro-Grinding of BK7 Glass
,”
J. Manuf. Process.
,
54
, pp.
374
392
.
22.
Arrabiyeh
,
P.
,
Bohley
,
M.
,
Ströer
,
F.
,
Kirsch
,
B.
,
Seewig
,
J.
, and
Aurich
,
J.
,
2017
, “
Experimental Analysis for the Use of Sodium Dodecyl Sulfate as a Soluble Metal Cutting Fluid for Micromachining With Electroless-Plated Micropencil Grinding Tools
,”
Inventions
,
2
(
4
), p.
29
.
23.
Davanlou
,
A.
,
Lee
,
J.
,
Basu
,
S.
, and
Kumar
,
R.
,
2013
, “
The Effects of Surfactant on Simplex Nozzle Spray Behavior and Its Comparison to Liquid Fuels
,”
Proceedings of the ASME 2013 International Mechanical Engineering Congress and Exposition IMECE2013
,
San Diego, CA
,
Nov. 15–21
, pp.
1
7
.
24.
Pratap
,
A.
, and
Patra
,
K.
,
2019
, “
Effects of Discharge Dressing Parameters on Polycrystalline Diamond Micro-Tool Surface Topography and Their Micro-Grinding Performances
,”
Int. J. Refract. Metals Hard Mater.
,
82
, pp.
297
309
.
25.
Pratap
,
A.
, and
Patra
,
K.
,
2022
, “
Novel Tool Design to Tailor Debris Migration and Tool Wear Mechanism in Micro-Slot Grinding
,”
Wear
,
494–495
, p.
204240
.
You do not currently have access to this content.