Abstract

The consistency in the fabrication of microsurface structures on large workpieces remains a challenge for existing production techniques. Mask electrolyte jet machining (MEJM) is a hybrid mask-based electrochemical machining (ECM) process that combines the flexibility of Jet-ECM to flush the electrochemical by-products and the high throughput processing feature of through-mask electrochemical micromachining (TMEMM). In the present study, a duckbill-shaped nozzle is employed in the MEJM for the batch fabrication of microsurface structures which facilitates more uniform current density distribution over the entire machining area, resulting in better consistency. With a larger slit length, the duckbill nozzle will not only cover more processing area but also facilitates more uniform current density distribution over the entire machining area, resulting in a better consistency for batch fabrication. Thresholds of the ratio of slit length to the machining area were derived from a quantitative analysis, namely the efficient threshold and the performance threshold. The slit length of the duckbill nozzle should be at least twice as large as the machining area to wipe out any observable deviation on current density distribution in the machining area. An efficient and high-performance numerical simulation framework with a virtual gap concept is developed for the mask-based ECM processes to simulate microcavity profiles and associated current density distribution. The concept of a virtual gap is proposed to solve the simulation dilemma of elements being consumed in the mask-based ECM process. Quantitative analyses were carried out to study how the virtual gap influences the electric current density distribution in the interelectrode gap. A virtual gap smaller than 100 nm is recommended. Guidelines on how to ensure a smooth electric field transition across the coarse and fine-meshed zones are presented by conducting a quantitative analysis. As an example, this work has successfully fabricated several cavity arrays with different processing parameters. Both the experimental results and the numerical simulation frameworks are easy-to-implement and easy-to-extend for all the mask-based ECM processes.

References

1.
Li
,
S.
,
Wu
,
Y.
,
Nomura
,
M.
, and
Fujii
,
T.
,
2018
, “
Fundamental Machining Characteristics of Ultrasonic-Assisted Electrochemical Grinding of Ti–6Al–4V
,”
ASME J. Manuf. Sci. Eng.
,
140
(
7
), p.
071009
.
2.
Altena
,
H. S. J.
,
2004
, “
EDM and ECM for Mass Production Philips DAP
,”
J. Mater. Process. Technol.
,
149
(
1
), pp.
18
21
.
3.
Zhan
,
D.
,
Han
,
L.
,
Zhang
,
J.
,
Shi
,
K.
,
Zhou
,
J.-Z.
,
Tian
,
Z.-W.
, and
Tian
,
Z.-Q.
,
2016
, “
Confined Chemical Etching for Electrochemical Machining With Nanoscale Accuracy
,”
Acc. Chem. Res.
,
49
(
11
), pp.
2596
2604
.
4.
Rajurkar
,
K. P.
,
Levy
,
G.
,
Malshe
,
A.
,
Sundaram
,
M. M.
,
McGeough
,
J.
,
Hu
,
X.
,
Resnick
,
R.
, and
DeSilva
,
A.
,
2006
, “
Micro and Nano Machining by Electro-Physical and Chemical Processes
,”
CIRP Ann.
,
55
(
2
), pp.
643
666
.
5.
Saxena
,
K. K.
,
Qian
,
J.
, and
Reynaerts
,
D.
,
2018
, “
A Review on Process Capabilities of Electrochemical Micromachining and Its Hybrid Variants
,”
Int. J. Mach. Tools Manuf.
,
127
, pp.
28
56
.
6.
Maharana
,
H. S.
,
Kumar
,
R.
,
Narayana Murty
,
S. V. S.
,
Ramkumar
,
J.
, and
Mondal
,
K.
,
2019
, “
Surface Micro-Texturing of Dual Phase Steel and Copper by Combining Laser Machining and Electrochemical Dissolution
,”
J. Mater. Process. Technol.
,
273
, p.
116260
.
7.
Klink
,
A.
,
Harst
,
S.
,
Olivier
,
M.
,
Tombul
,
U.
, and
Bergs
,
T.
,
2020
, “
High Entropy Alloy Machining by EDM and ECM
,”
Procedia CIRP
,
95
, pp.
178
182
.
8.
Wang
,
M.
, and
Qu
,
N.
,
2021
, “
Macro Electrolyte Jet Machining of TC4 Titanium Alloy Using Negative-Incidence Jet Form
,”
J. Mater. Process. Technol.
,
294
, p.
117148
.
9.
Han
,
W.
, and
Kunieda
,
M.
,
2019
, “
A Novel Method to Switch Machining Mode Between Micro-ECM and Micro-EDM Using Oxide Film on Surface of Tungsten Electrode
,”
Precis. Eng.
,
56
, pp.
455
465
.
10.
Qu
,
N.
,
Chen
,
X.
,
Li
,
H.
, and
Zeng
,
Y.
,
2014
, “
Electrochemical Micromachining of Micro-Dimple Arrays on Cylindrical Inner Surfaces Using a Dry-Film Photoresist
,”
Chin. J. Aeronaut.
,
27
(
4
), pp.
1030
1036
.
11.
Singh Patel
,
D.
,
Agrawal
,
V.
,
Ramkumar
,
J.
,
Jain
,
V. K.
, and
Singh
,
G.
,
2020
, “
Micro-Texturing on Free-Form Surfaces Using Flexible-Electrode Through-Mask Electrochemical Micromachining
,”
J. Mater. Process. Technol.
,
282
, p.
116644
.
12.
Kurita
,
T.
,
Miyake
,
K.
,
Fujita
,
Y.
, and
Kaneko
,
A.
,
2020
, “
The Observation of Growth and Diffusion of Electrolytic Product in ECM
,”
J. Manuf. Process.
,
60
, pp.
636
643
.
13.
Alkire
,
R. C.
,
Deligianni
,
H.
, and
Ju
,
J.-B.
,
1990
, “
Effect of Fluid Flow on Convective Transport in Small Cavities
,”
J. Electrochem. Soc.
,
137
(
3
), p.
818
.
14.
Sapre
,
P.
,
Mall
,
A.
, and
Joshi
,
S. S.
,
2013
, “
Analysis of Electrolytic Flow Effects in Micro-Electrochemical Grinding
,”
ASME J. Manuf. Sci. Eng.
,
135
(
1
), p.
011012
.
15.
Wang
,
G.
,
Li
,
H.
,
Qu
,
N.
, and
Zhu
,
D.
,
2017
, “
Improvement of Electrolyte Flow Field During Through-Mask Electrochemical Machining by Changing Mask Wall Angle
,”
J. Manuf. Process.
,
25
, pp.
246
252
.
16.
Wang
,
G.
,
Li
,
H.
,
Zhang
,
C.
, and
Zhu
,
D.
,
2019
, “
Improvement of Machining Consistency During Through-Mask Electrochemical Large-Area Machining
,”
Chin. J. Aeronaut.
,
32
(
4
), pp.
1051
1058
.
17.
Chen
,
X.
,
Qu
,
N.
,
Li
,
H.
, and
Xu
,
Z.
,
2016
, “
Electrochemical Micromachining of Micro-Dimple Arrays Using a Polydimethylsiloxane (PDMS) Mask
,”
J. Mater. Process. Technol.
,
229
, pp.
102
110
.
18.
Liu
,
Y.
,
Liu
,
J.
,
Zhu
,
D.
, and
Wang
,
H.
,
2022
, “
Design and Optimization of Electrolyte Flow Fields in Electrochemical Machining of Cross-Channel Array With Tool Vibration
,”
Chin. J. Aeronaut.
,
35
(
4
), pp.
461
472
.
19.
Yuan
,
L.
,
Xu
,
J.
,
Zhao
,
J.
, and
Zhang
,
H.
,
2012
, “
Research on Hybrid Process of Laser Drilling With Jet Electrochemical Machining
,”
ASME J. Manuf. Sci. Eng.
,
134
(
6
), p.
064502
.
20.
Speidel
,
A.
,
Mitchell-Smith
,
J.
,
Bisterov
,
I.
, and
Clare
,
A. T.
,
2018
, “
The Importance of Microstructure in Electrochemical Jet Processing
,”
J. Mater. Process. Technol.
,
262
, pp.
459
470
.
21.
Wu
,
M.
,
Liu
,
J.
,
He
,
J.
,
Chen
,
X.
, and
Guo
,
Z.
,
2020
, “
Fabrication of Surface Microstructures by Mask Electrolyte Jet Machining
,”
Int. J. Mach. Tools Manuf.
,
148
, p.
103471
.
22.
Deconinck
,
D.
,
Van Damme
,
S.
, and
Deconinck
,
J.
,
2012
, “
A Temperature Dependent Multi-Ion Model for Time Accurate Numerical Simulation of the Electrochemical Machining Process. Part I: Theoretical Basis
,”
Electrochim. Acta
,
60
, pp.
321
328
.
23.
Zhang
,
X.
,
Wang
,
Q. J.
, and
Shen
,
H.
,
2018
, “
A Multi-Field Coupled Mechanical-Electric-Magnetic-Chemical-Thermal (MEMCT) Theory for Material Systems
,”
Comput. Methods Appl. Mech. Eng.
,
341
, pp.
133
162
.
24.
Liu
,
D.
,
Zhang
,
C.
,
Wang
,
G.
,
Shao
,
Z.
,
Zhu
,
X.
,
Wang
,
N.
, and
Cheng
,
H.
,
2014
, “
Nanoscale Electrochemical Metallization Memories Based on Amorphous (La, Sr)MnO3 using Ultrathin Porous Alumina Masks
,”
J. Phys. D: Appl. Phys.
,
47
(
8
), p.
085108
.
25.
Chang
,
Y.-J.
, and
Liao
,
J.-M.
,
2017
, “
Fabrication of Sub-100 nm h-PDMS Tip Array for Tip-Based Nanolithography by Electrochemical Machining
,”
Microsyst. Technol.
,
23
(
5
), pp.
1361
1366
.
26.
Li
,
H.
,
Fu
,
S.
,
Zhang
,
Q.
,
Niu
,
S.
, and
Qu
,
N.
,
2018
, “
Simulation and Experimental Investigation of Inner-Jet Electrochemical Grinding of GH4169 Alloy
,”
Chin. J. Aeronaut.
,
31
(
3
), pp.
608
616
.
27.
Chen
,
X.
,
Qu
,
N.
,
Li
,
H.
, and
Guo
,
Z.
,
2015
, “
Removal of Islands From Micro-Dimple Arrays Prepared by Through-Mask Electrochemical Micromachining
,”
Precis. Eng.
,
39
, pp.
204
211
.
28.
Qu
,
N.
,
Chen
,
X.
,
Li
,
H.
, and
Zhu
,
D.
,
2014
, “
Fabrication of PDMS Micro Through-Holes for Electrochemical Micromachining
,”
Int. J. Adv. Manuf. Technol.
,
72
(
1
), pp.
487
494
.
29.
Unger
,
J. F.
, and
Eckardt
,
S.
,
2011
, “
Multiscale Modeling of Concrete
,”
Arch Comput. Methods Eng.
,
18
(
3
), p.
341
.
30.
Lloberas-Valls
,
O.
,
Rixen
,
D. J.
,
Simone
,
A.
, and
Sluys
,
L. J.
,
2012
, “
On Micro-to-Macro Connections in Domain Decomposition Multiscale Methods
,”
Comput. Methods Appl. Mech. Eng.
,
225–228
, pp.
177
196
.
31.
Kim
,
H.-G.
,
2003
, “
Interface Element Method: Treatment of Non-matching Nodes at the Ends of Interfaces Between Partitioned Domains
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
15
), pp.
1841
1858
.
32.
Bitencourt
,
L. A. G.
,
Manzoli
,
O. L.
,
Prazeres
,
P. G. C.
,
Rodrigues
,
E. A.
, and
Bittencourt
,
T. N.
,
2015
, “
A Coupling Technique for Non-matching Finite Element Meshes
,”
Comput. Methods Appl. Mech. Eng.
,
290
, pp.
19
44
.
33.
Higham
,
N. J.
, and
Mary
,
T.
,
2019
, “
A New Approach to Probabilistic Rounding Error Analysis
,”
SIAM J. Sci. Comput.
,
41
(
5
), pp.
A2815
A2835
.
34.
Gramacki
,
A.
,
2018
,
Nonparametric Kernel Density Estimation and Its Computational Aspects
(Studies in Big Data, Vol. 37),
Springer International Publishing
,
Cham.
35.
Botev
,
Z. I.
,
Grotowski
,
J. F.
, and
Kroese
,
D. P.
,
2010
, “
Kernel Density Estimation Via Diffusion
,”
Ann. Stat.
,
38
(
5
), pp.
2916
2957
.
36.
Wu
,
M.
,
Kumar Saxena
,
K.
,
Guo
,
Z.
,
Qian
,
J.
, and
Reynaerts
,
D.
,
2020
, “
Fast Fabrication of Complex Surficial Micro-Features Using Sequential Lithography and Jet Electrochemical Machining
,”
Micromachines
,
11
(
10
), p.
948
.
37.
Colbrook
,
M. J.
,
Botev
,
Z. I.
,
Kuritz
,
K.
, and
MacNamara
,
S.
,
2020
, “
Kernel Density Estimation With Linked Boundary Conditions
,”
Stud. Appl. Math.
,
145
(
3
), pp.
357
396
.
38.
Zaldivar
,
R.
,
Witkin
,
D.
,
McLouth
,
T.
,
Patel
,
D.
,
Schmitt
,
K.
, and
Nokes
,
J.
,
2017
, “
Influence of Processing and Orientation Print Effects on the Mechanical and Thermal Behavior of 3D-Printed ULTEM® 9085 Material
,”
Addit. Manuf.
,
13
, pp.
71
80
.
You do not currently have access to this content.