Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Various machining errors inevitably occur on aero-engine compressor blades, including leading-edge contour error, trailing-edge contour error, camber contour error, and more. The current complexity surrounding the numerous machining error types and their obscure interrelationships imposes immense effort for aerodynamic analysis and hinders overall error control. Thus, elucidating error correlations to achieve error dimensionality reduction is imperative. This study pioneers a dimensionality reduction approach via exploratory factor analysis to conduct a comprehensive statistical analysis of 13 types of blade machining errors. The proposed technique can categorize the 13 errors into three groups, each dominated by a distinct common factor. Furthermore, bootstrap resampling establishes the 95% confidence intervals for the factor scores. Capitalizing on the grouping structure uncovered by exploratory factor analysis, multiple linear regression models are built for the errors within each group, and then, a preliminary conjecture is made about the potential control error types for each group of errors based on the regression coefficients. This hypothesis is then evidenced by the statistical analysis of cross section profile error data of 28 blades. The present work can not only optimize machining processes but also relax tolerance requirements and diminish the effort of aerodynamic analysis.

References

1.
Qin
,
S.
,
Wang
,
S.
,
Wang
,
L.
,
Wang
,
C.
,
Sun
,
G.
, and
Zhong
,
Y.
,
2020
, “
Multi-Objective Optimization of Cascade Blade Profile Based on Reinforcement Learning
,”
Appl. Sci.
,
11
(
1
), p.
106
.
2.
Su
,
C.
,
Jiang
,
X.
,
Huo
,
G.
,
Zou
,
Q.
,
Zheng
,
Z.
, and
Feng
,
H. Y.
,
2020
, “
Accurate Model Construction of Deformed Aero-Engine Blades for Remanufacturing
,”
Int. J. Adv. Manuf. Technol.
,
106
(
7–8
), pp.
3239
3251
.
3.
Madhav
,
S.
, and
Roy
,
M.
,
2022
, “
Failure Analysis of Compressor Blades of Aero-Engine
,”
J. Fail. Anal. Prev.
,
22
(
3
), pp.
968
982
.
4.
Zhao
,
Y.
,
Yu
,
C.
,
Lan
,
H.
,
Cao
,
M.
, and
Jiang
,
L.
,
2017
, “
Improved Interfacial Floatability of Superhydrophobic/Superhydrophilic Janus Sheet Inspired by Lotus Leaf
,”
Adv. Funct. Mater.
,
27
(
27
), p.
1701466
.
5.
Zheng
,
S. Y.
,
Teng
,
J. F.
, and
Qiang
,
X. Q.
,
2018
, “
Sensitivity Analysis of Manufacturing Variability on High-Pressure Compressor Performance
,”
J. Mech. Eng.
,
54
(
2
), pp.
216
224
.
6.
Suriyanarayanan
,
V.
,
Rendu
,
Q.
,
Vahdati
,
M.
, and
Salles
,
L.
,
2022
, “
Effect of Manufacturing Tolerance in Flow Past a Compressor Blade
,”
ASME J. Turbomach.
,
144
(
4
), p.
041005
.
7.
Guo
,
Z. T.
,
Chu
,
W. L.
,
Yan
,
S.
, and
Luo
,
M.
,
2022
, “
Data Mining on Effects of Manufacturing Error on Aerodynamic Performance and Stability of Compressor Cascade
,”
J. Propul. Technol.
,
43
(
3
), pp.
141
153
.
8.
Gao
,
L. M.
,
Cai
,
Y. T.
,
Zeng
,
R. H.
, and
Tian
,
L. C.
,
2017
, “
Effects of Blade Machining Error on Compressor Cascade Aerodynamic Performance
,”
J. Propul. Technol.
,
38
(
3
), pp.
525
531
.
9.
Cheng
,
C.
,
Wu
,
B. H.
,
Zheng
,
H.
, and
Gao
,
L. M.
,
2020
, “
Effect of Blade Machining Errors on Compressor Performance
,”
Acta Aeronaut. Astronaut. Sin.
,
41
(
2
), pp.
28
38
.
10.
Gao
,
L. M.
,
Cai
,
Y. T.
,
Xu
,
H. L.
, and
Deng
,
W.
,
2017
, “
Uncertainty Analysis of Machining Error Influence on Compressor Blade
,”
J. Aerosp. Power.
,
32
(
9
), pp.
2253
2259
.
11.
Cong
,
J. M.
,
Mo
,
R.
,
Wu
,
B. H.
, and
Hou
,
Y. H.
,
2017
, “
Performance Oriented Machining Error Analysis and Statistic of Compressor Blade
,”
Aeronaut. Manuf. Technol.
,
2017
(
15
), pp.
38
44
. 116080/j.issn1671-833x.2017.15.038
12.
Li
,
P.
,
2015
, “
Effects of Blade Machining Error and Data Transfer on Compressor Aerodynamic Performance
,”
Master thesis
,
Northwestern Polytechnical University
,
Xi'an
.
13.
Wong
,
C. Y.
,
Seshadri
,
P.
,
Scillitoe
,
A.
,
Duncan
,
A. B.
, and
Parks
,
G.
,
2022
, “
Blade Envelopes Part I: Concept and Methodology
,”
ASME J. Turbomach.
,
144
(
6
), p.
061006
.
14.
Garzon
,
V. E.
,
2003
, “
Probabilistic Aerothermal Design of Compressor Airfoils
,”
Ph.D. dissertation
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
15.
Garzon
,
V. E.
, and
Darmofal
,
D. L.
,
2003
, “
Impact of Geometric Variability on Axial Compressor Performance
,”
ASME J. Turbomach.
,
125
(
4
), pp.
692
703
.
16.
Gao
,
L.
,
Ma
,
C.
, and
Cai
,
Y.
,
2019
, “
A Robust Blade Design Method Based on Non-Intrusive Polynomial Chaos Considering Profile Error
,”
J. Therm. Sci.
,
28
(
5
), pp.
875
885
.
17.
Ju
,
Y.
,
Liu
,
Y.
,
Jiang
,
W.
, and
Zhang
,
C.
,
2021
, “
Aerodynamic Analysis and Design Optimization of a Centrifugal Compressor Impeller Considering Realistic Manufacturing Uncertainties
,”
Aerosp. Sci. Technol.
,
115
, p.
106787
.
18.
Guo
,
Z.
,
Chu
,
W.
, and
Zhang
,
H.
,
2022
, “
A Data-Driven Non-Intrusive Polynomial Chaos for Performance Impact of High Subsonic Compressor Cascades With Stagger Angle and Profile Errors
,”
Aerosp. Sci. Technol.
,
129
, p.
107802
.
19.
Ramachandran
,
D.
,
Mayandi
,
B.
,
Dasappagoundenpudur Arthanarisamy
,
S.
,
Murugan
,
V.
,
Boolingam
,
S.
, and
Reddy Shanmugam
,
R.
,
2019
, “
Numerical Simulation of the Effects of Manufacturing Deviations in Compressor Wheel Geometry on Performance
,”
Gas Turbine India Conference, ASME
,
Chennai, Tamil Nadu, India
,
Dec. 5–6
.
20.
Lange
,
A.
,
Voigt
,
M.
,
Vogeler
,
K.
,
Schrapp
,
H.
,
Johann
,
E.
, and
Gümmer
,
V.
,
2012
, “
Impact of Manufacturing Variability on Multistage High-Pressure Compressor Performance
,”
ASME J. Eng. Gas Turbines Power
,
134
(
11
), p.
112601
.
21.
Lange
,
A.
,
Vogeler
,
K.
,
Gummer
,
V.
,
Schrapp
,
H.
, and
Clemen
,
C.
,
2009
, “
Introduction of a Parameter Based Compressor Blade Model for Considering Measured Geometry Uncertainties in Numerical Simulation
,”
Turbo Expo: Power for Land, Sea, and Air. 2009
,
Orlando, FL
,
June 8–12
, Vol. 48876, pp.
1113
1123
.
22.
Montomoli
,
F.
,
Massini
,
M.
, and
Salvadori
,
S.
,
2011
, “
Geometrical Uncertainty in Turbomachinery: Tip Gap and Fillet Radius
,”
Comput. Fluids
,
46
(
1
), pp.
362
368
.
23.
Wang
,
X.
, and
Zou
,
Z.
,
2019
, “
Uncertainty Analysis of Impact of Geometric Variations on Turbine Blade Performance
,”
Energy
,
176
, pp.
67
80
.
24.
Duffner
,
J. D.
,
2008
, “
The Effects of Manufacturing Variability on Turbine Vane Performance
,”
Master thesis
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
25.
Schnell
,
R.
,
Lengyel-Kampmann
,
T.
, and
Nicke
,
E.
,
2014
, “
On the Impact of Geometric Variability on Fan Aerodynamic Performance, Unsteady Blade Row Interaction, and Its Mechanical Characteristics
,”
ASME J. Turbomach.
,
136
(
9
), p.
091005
.
26.
Geng
,
S. J.
,
Zhang
,
X. Y.
,
Ding
,
L. C.
,
Wang
,
W. T.
,
Bian
,
X. D.
, and
Shi
,
S. C.
,
2020
, “
Effects of Rotor Blade Manufacturing Variability on 1.5 Stage Transonic Compressor Aerodynamic Performance
,”
J. Propul. Technol.
,
42
(
1
), pp.
139
148
.
27.
Chu
,
W. L.
,
He
,
X. D.
,
Yang
,
J. B.
, and
Liu
,
K.
,
2023
, “
Effects of Blade Single and Coupling Errors on Axial Flow Compressor Performance
,”
J. Aerosp. Power
, pp.
1
14
.
28.
Dow
,
E.
, and
Wang
,
Q.
,
2013
, “
Output Based Dimensionality Reduction of Geometric Variability in Compressor Blades
,”
51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, AIAA 2013
,
Grapevine, TX
,
Jan. 7–10
, p.
420
.
29.
Wang
,
Q.
,
Chen
,
H.
,
Hu
,
R.
, and
Constantine
,
P.
,
2011
, “
Conditional Sampling and Experiment Design for Quantifying Manufacturing Error of Transonic Airfoil
,”
49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, AIAA 2011
,
Orlando, FL
,
Jan. 4–7
, p.
658
.
30.
Bui-Thanh
,
T.
,
Willcox
,
K.
, and
Ghattas
,
O.
,
2008
, “
Parametric Reduced-Order Models for Probabilistic Analysis of Unsteady Aerodynamic Applications
,”
AIAA J.
,
46
(
10
), pp.
2520
2529
.
31.
Rencher
,
A. C.
,
2002
,
Methods of Multivariate Analysis
, 2nd ed,
John Wiley & Sons
,
New York
.
32.
Shrestha
,
N.
,
2021
, “
Factor Analysis as a Tool for Survey Analysis
,”
Am. J. Appl. Math. Stat.
,
9
(
1
), pp.
4
11
.
33.
Tabachnick
,
B. G.
,
Fidell
,
L. S.
, and
Ullman
,
J. B.
,
2013
,
Using Multivariate Statistics
,
Pearson
,
Boston, MA
.
34.
Guttman
,
L.
,
1954
, “
Some Necessary Conditions for Common-Factor Analysis
,”
Psychometrika
,
19
(
2
), pp.
149
161
.
35.
Kaiser
,
H. F.
,
1970
, “
A Second Generation Little Jiffy
,”
Psychometrika
,
35
(
4
), pp.
401
415
.
36.
Tucker
,
L.R.
, and
MacCallum
,
R.C
.,
1997
,
Exploratory Factor Analysis
,
Ohio State University, Columbus
, pp.
1
459
(unpublished manuscript).
37.
Srivastava
,
M. S.
,
2002
,
Methods of Multivariate Statistics
,
John Wiley & Sons
,
New York
.
38.
Shi
,
D.
,
Maydeu-Olivares
,
A.
, and
Rosseel
,
Y.
,
2020
, “
Assessing Fit in Ordinal Factor Analysis Models: SRMR vs. RMSEA
,”
Struct. Equ. Modeling
,
27
(
1
), pp.
1
15
.
39.
Park
,
C.
,
Dey
,
S.
,
Ouyang
,
L.
,
Byun
,
J. H.
, and
Leeds
,
M.
,
2020
, “
Improved Bootstrap Confidence Intervals for the Process Capability Index Cpk
,”
Commun. Stat. Simul. Comput.
,
49
(
10
), pp.
2583
2603
.
40.
Giordani
,
P.
, and
Kiers
,
H. A. L.
,
2021
, “
Bootstrap Confidence Intervals for Principal Covariates Regression
,”
Br. J. Math. Stat. Psychol.
,
74
(
3
), pp.
541
566
.
You do not currently have access to this content.