Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Aluminum is the world's second most consumed metal, and its production contributes substantially to global greenhouse gas (GHG) emissions. When formulating decarbonization strategies, it is imperative to ensure their coherence and alignment with existing industrial practices and standards. A material flow analysis (MFA) is needed to gain a holistic and quantitative understanding of the flows and stocks of products/materials associated with all participants within the supply chain. To support risk-informed decision policymaking in decarbonizing aluminum manufacturing, this study develops a dynamic system model that maps global aluminum flows and computes their embedded GHG emissions. A baseline scenario is devised to reflect the current business and operation landscape, and three decarbonization strategies are proposed. Deterministic simulation is performed to generate dynamic material flows and performance metrics. Monte Carlo simulation is then implemented to evaluate the robustness of the system's performance under demand uncertainties. The results reveal the immense carbon implications of material efficiency, as well as the preponderant role of post-consumer scrap recycling in decarbonizing aluminum manufacturing. Informed by simulation outputs, macro decarbonization guidelines are formulated for various criteria. The object-oriented programming framework that underlies the dynamic MFA may be integrated with network analysis, agent-based simulation, and geospatial interfaces, which may lay the foundation for modeling more fine-grained material flows and supply chain structures.

References

1.
Zhu
,
Y.
,
Chappuis
,
L. B.
,
De Kleine
,
R.
,
Kim
,
H. C.
,
Wallington
,
T. J.
,
Luckey
,
G.
, and
Cooper
,
D. R.
,
2021
, “
The Coming Wave of Aluminum Sheet Scrap From Vehicle Recycling in the United States
,”
Resour. Conserv. Recycl.
,
164
, p.
105208
.
2.
The Aluminum Association
,
2021
,
Aluminum a Key Material for Renewable Energy
,
The Aluminum Association
,
Arlington, VA
. https://www.aluminum.org/aluminum-key-material-renewable-energy
4.
Raabe
,
D.
,
Ponge
,
D.
,
Uggowitzer
,
P. J.
,
Roscher
,
M.
,
Paolantonio
,
M.
,
Liu
,
C.
,
Antrekowitsch
,
H.
, et al
,
2022
, “
Making Sustainable Aluminum by Recycling Scrap: The Science of “Dirty” Alloys
,”
Prog. Mater. Sci.
,
128
, p.
100947
.
6.
International Aluminum Institute
,
2023
,
Statistics – Primary Aluminium Production
,
International Aluminium Institute
,
London, UK
, https://international-aluminium.org/statistics/primary-aluminium-production/https://international-aluminium.org/statistics/primary-aluminium-production/
7.
The World Economic Forum
,
2020
,
Aluminium for Climate: Exploring Pathways to Decarbonize the Aluminium Industry
,
The World Economic Forum
,
Cologny, Switzerland
, https://www3.weforum.org/docs/WEF_Aluminium_for_Climate_2020.pdfhttps://www3.weforum.org/docs/WEF_Aluminium_for_Climate_2020.pdf
8.
Reinsch
,
W. A.
, and
Benson
,
E.
,
2022
,
Decarbonizing Aluminum: Rolling Out a More Sustainable Sector
,
Center for Strategic & International Studies
,
Washington, DC
, https://www.csis.org/analysis/decarbonizing-aluminum-rolling-out-more-sustainable-sectorhttps://www.csis.org/analysis/decarbonizing-aluminum-rolling-out-more-sustainable-sector
9.
International Energy Agency (IEA)
,
2023
,
Tracking Clean Energy Progress 2023
,
IEA
,
Paris, France
, https://www.iea.org/reports/tracking-clean-energy-progress-2023https://www.iea.org/reports/tracking-clean-energy-progress-2023
10.
Oberthür
,
S.
,
Khandekar
,
G.
, and
Wyns
,
T.
,
2021
, “
Global Governance for the Decarbonization of Energy-Intensive Industries: Great Potential Underexploited
,”
Earth Syst. Gov.
,
8
, p.
100072
.
11.
Lopes Silva
,
D. A.
,
De Oliveira
,
J. A.
,
Saavedra
,
Y. M. B.
,
Ometto
,
A. R.
,
Rieradevall I Pons
,
J.
, and
Gabarrell Durany
,
X.
,
2015
, “
Combined MFA and LCA Approach to Evaluate the Metabolism of Service Polygons: A Case Study on a University Campus
,”
Resour. Conser. Recycl.
,
94
, pp.
157
168
.
12.
Csiszar
,
S. A.
, and
Meyer
,
D. E.
,
2017
, “LCA in Relation to Risk Assessment,”
Encyclopedia of Sustainable Technologies
,
M. A.
Abraham
, ed.,
Elsevier
,
Amsterdam, The Netherlands
, pp.
243
251
.
13.
Owens
,
J. W.
,
1997
, “
Life-Cycle Assessment in Relation to Risk Assessment: An Evolving Perspective
,”
Risk Anal.
,
17
(
3
), pp.
359
365
.
14.
Cullen
,
J. M.
, and
Allwood
,
J. M.
,
2013
, “
Mapping the Global Flow of Aluminum: From Liquid Aluminum to End-Use Goods
,”
Environ. Sci. Technol.
,
47
(
7
), pp.
3057
3064
.
15.
Prasad
,
S.
,
2000
, “
Studies on the Hall-Heroult Aluminum Electrowinning Process
,”
J. Braz. Chem. Soc.
,
11
(
3
), pp.
245
251
.
16.
Allwood
,
J. M.
,
2014
, “Squaring the Circular Economy: The Role of Recycling Within a Hierarchy of Material Management Strategies,”
Handbook of Recycling: State-of-the-Art for Practitioners, Analysts, and Scientists
,
E.
Worrell
, and
M. A.
Reuter
, eds.,
Elsevier
,
Amsterdam, The Netherlands
, pp.
445
477
. .
17.
Daehn
,
K.
,
Basuhi
,
R.
,
Gregory
,
J.
,
Berlinger
,
M.
,
Somjit
,
V.
, and
Olivetti
,
E. A.
,
2022
, “
Innovations to Decarbonize Materials Industries
,”
Nat. Rev. Mater.
,
7
(
4
), pp.
275
294
.
18.
Mission Possible Partnership
,
2023
,
Aluminum Decarbonization at a Cost That Makes Sense
,
McKinsey & Company
,
New York, NY
, https://www.mckinsey.com/industries/metals-and-mining/our-insights/aluminum-decarbonization-at-a-cost-thatmakes-sense
19.
Rajulwar
,
V. V.
,
Shyrokykh
,
T.
,
Stirling
,
R.
,
Jarnerud
,
T.
,
Korobeinikov
,
Y.
,
Bose
,
S.
,
Bhattacharya
,
B.
,
Bhattacharjee
,
D.
, and
Sridhar
,
S.
,
2023
, “
Steel, Aluminum, and FRP-Composites: The Race to Zero Carbon Emissions
,”
Energies (Basel)
,
16
(
19
), p.
6904
.
20.
Milford
,
R. L.
,
Allwood
,
J. M.
, and
Cullen
,
J. M.
,
2011
, “
Assessing the Potential of Yield Improvements, Through Process Scrap Reduction, for Energy and CO2 Abatement in the Steel and Aluminium Sectors
,”
Resour. Conserv. Recycl.
,
55
(
12
), pp.
1185
1195
.
21.
Sgouridis
,
S.
,
Ali
,
M.
,
Sleptchenko
,
A.
,
Bouabid
,
A.
, and
Ospina
,
G.
,
2021
, “
Aluminum Smelters in the Energy Transition: Optimal Configuration and Operation for Renewable Energy Integration in High Insolation Regions
,”
Renew. Energy
,
180
, pp.
937
953
.
22.
Squadrito
,
G.
,
Maggio
,
G.
, and
Nicita
,
A.
,
2023
, “
The Green Hydrogen Revolution
,”
Renew. Energy
,
216
, p.
119041
.
24.
Constellium
,
2024
,
Constellium Advances Decarbonization Efforts With Industrial Testing of Hydrogen Use in Casthouses
,
Constellium
,
Paris
, https://www.constellium.com/news/constellium-advances-decarbonization-efforts-with-hydrogen-testinghttps://www.constellium.com/news/constellium-advances-decarbonization-efforts-with-hydrogen-testing
25.
Masuku
,
C. M.
,
Caulkins
,
R. S.
, and
Siirola
,
J. J.
,
2024
, “
Process Decarbonization Through Electrification
,”
Curr. Opin. Chem. Eng.
,
44
, p.
101011
.
26.
International Energy Agency (IEA)
,
2023
, Electrification.
27.
Office of Energy Efficiency and Renewable Energy (EERE)
,
2017
,
Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Aluminum Manufacturing
,
U.S. Department of Energy
,
Washington, DC
, https://www.energy.gov/sites/prod/files/2019/05/f62/Aluminum_bandwidth_study_2017.pdfhttps://www.energy.gov/sites/prod/files/2019/05/f62/Aluminum_bandwidth_study_2017.pdf
28.
da Silva
,
M. C.
,
Lucena
,
H. L.
, and
de Freitas
,
N. L.
,
2014
, “
Effect of Calcination Temperature in the Aluminum Oxide Synthesized by Pechini Method in the Citric Acid: Metal Cation Ratio of 2:1
,”
Mater. Sci. Forum
,
798–799
, pp.
139
144
.
29.
Nissen
,
S. S.
, and
Sadoway
,
D. R.
,
1997
, “
Perfluorocarbon (PFC) Generation in Laboratory-Scale Aluminum Reduction Cells
,”
Light Metals: Proceedings of Sessions, TMS Annual Meeting
,
Orlando, FL
,
Feb. 9–13
, pp.
159
164
.
31.
Wells
,
I.
, and
Ahmed
,
S.
,
2023
,
The Role of Inert Anodes in Aluminum Decarbonization
,
NRDC
,
New York, NY
, https://www.nrdc.org/bio/ian-wells/role-inert-anodes-aluminum-decarbonizationhttps://www.nrdc.org/bio/ian-wells/role-inert-anodes-aluminum-decarbonization
32.
Haraldsson
,
J.
, and
Johansson
,
M. T.
,
2020
, “
Effects on Primary Energy Use, Greenhouse Gas Emissions and Related Costs From Improving Energy End-Use Efficiency in the Electrolysis in Primary Aluminium Production
,”
Energy Eff.
,
13
(
7
), pp.
1299
1314
.
33.
Allwood
,
J. M.
,
Ashby
,
M. F.
,
Gutowski
,
T. G.
, and
Worrell
,
E.
,
2013
, “
Material Efficiency: Providing Material Services With Less Material Production
,”
Philos. Trans. R. Soc., A
,
371
(
1986
), p.
20120496
.
34.
Allwood
,
J. M.
,
Cullen
,
J. M.
, et al
,
2012
,
Sustainable Materials: with Both Eyes Open
,
UIT Cambridge Limited
,
Cambridge, UK
.
35.
Wallace
,
G.
,
2010
,
Fundamentals of Aluminium Metallurgy: Production, Processing and Applications
,
Woodhead Publishing
,
Cambridge, UK
, pp.
70
82
.
36.
Reyes-Bozo
,
L.
,
Fúnez-Guerra
,
C.
,
Luis Salazar
,
J.
,
Vyhmeister
,
E.
,
Valdés-González
,
H.
,
Jaén Caparrós
,
M.
,
Clemente-Jul
,
C.
,
Carro-de Lorenzo
,
F.
, and
de Simón-Martín
,
M.
,
2024
, “
Green Hydrogen Integration in Aluminum Recycling: Techno-Economic Analysis Towards Sustainability Transition in the Expanding Aluminum Market
,”
Energy Convers. Manage.
,
22
, p.
100548
.
37.
Brooks
,
L.
,
Gaustad
,
G.
,
Gesing
,
A.
,
Mortvedt
,
T.
, and
Freire
,
F.
,
2019
, “
Ferrous and Non-Ferrous Recycling: Challenges and Potential Technology Solutions
,”
Waste Manage.
,
85
, pp.
519
528
.
38.
Nakajima
,
K.
,
Takeda
,
O.
,
Miki
,
T.
,
Matsubae
,
K.
, and
Nagasaka
,
T.
,
2011
, “
Thermodynamic Analysis for the Controllability of Elements in the Recycling Process of Metals
,”
Environ. Sci. Technol.
,
45
(
11
), pp.
4929
4936
.
39.
Zhu
,
Y.
, and
Cooper
,
D. R.
,
2019
, “
An Optimal Reverse Material Supply Chain for U.S. Aluminum Scrap
,”
Proc. CIRP
,
80
, pp.
677
682
.
40.
Ciacci
,
L.
,
Eckelman
,
M. J.
,
Passarini
,
F.
,
Chen
,
W. Q.
,
Vassura
,
I.
, and
Morselli
,
L.
,
2014
, “
Historical Evolution of Greenhouse Gas Emissions From Aluminum Production at a Country Level
,”
J. Clean. Prod.
,
84
(
1
), pp.
540
549
.
41.
Pincetl
,
S.
,
2012
, “A Living City: Using Urban Metabolism Analysis to View Cities as Life Forms,”
Metropolitan Sustainability: Understanding and Improving the Urban Environment
,
F.
Zeman
, ed.,
Woodhead Publishing
,
Cambridge, UK
, pp.
3
25
. .
42.
Müller
,
E.
,
Hilty
,
L. M.
,
Widmer
,
R.
,
Schluep
,
M.
, and
Faulstich
,
M.
,
2014
, “
Modeling Metal Stocks and Flows: A Review of Dynamic Material Flow Analysis Methods
,”
Environ. Sci. Technol.
,
48
(
4
), pp.
2102
2113
.
43.
Bertram
,
M.
,
Ramkumar
,
S.
,
Rechberger
,
H.
,
Rombach
,
G.
,
Bayliss
,
C.
,
Martchek
,
K. J.
,
Müller
,
D. B.
, and
Liu
,
G.
,
2017
, “
A Regionally-Linked, Dynamic Material Flow Modelling Tool for Rolled, Extruded and Cast Aluminium Products
,”
Resour. Conserv. Recycl.
,
125
, pp.
48
69
.
44.
Chen
,
W. Q.
, and
Graedel
,
T. E.
,
2012
, “
Dynamic Analysis of Aluminum Stocks and Flows in the United States: 1900–2009
,”
Ecol. Econ.
,
81
, pp.
92
102
.
45.
Liu
,
G.
,
Bangs
,
C. E.
, and
Müller
,
D. B.
,
2013
, “
Stock Dynamics and Emission Pathways of the Global Aluminium Cycle
,”
Nat. Clim. Change
,
3
(
4
), pp.
338
342
.
46.
Luo
,
Z.
, and
Soria Ramirez
,
A.
,
2008
,
Prospective Study of the World Aluminium Industry
,
OPOCE
,
Luxembourg
.
47.
Menzie
,
W. D.
,
Barry
,
J. J.
,
Bleiwas
,
D. I.
,
Bray
,
E. L.
,
Goonan
,
T. G.
, and
Matos
,
G.
,
2010
,
The Global Flow of Aluminum From 2006 Through 2025
,
U.S. Geological Survey
,
Reston, VA
.
48.
Urtnowski-Morin
,
C.
,
Tanguay-Rioux
,
F.
,
Legros
,
R.
, and
Spreutels
,
L.
,
2021
, “
Upgrading Waste Material Flow Analysis With Process Models: The Case of Anaerobic Digestion
,”
J. Clean. Prod.
,
298
, p.
126695
.
49.
Daigo
,
I.
,
Iwata
,
K.
,
Ohkata
,
I.
, and
Goto
,
Y.
,
2015
, “
Macroscopic Evidence for the Hibernating Behavior of Materials Stock
,”
Environ. Sci. Technol.
,
49
(
14
), pp.
8691
8696
.
50.
Choate
,
W. T.
, and
Green
,
J. A. S.
,
2003
, “
U.S. Energy Requirements for Aluminum Production: Historical Perspective, Theoretical Limits and New Opportunities
,”
TMS Annual Meeting
,
San Diego, CA
,
Mar. 2–6
, pp.
99
113
.
51.
The U.S. Department of Energy
,
2013
,
U.S. Energy Requirements for Aluminum Production – Historical Perspective, Theoretical Limits and Current Practices
,
The U.S. Department of Energy
,
Washington, DC
, https://www.energy.gov/sites/default/files/2013/11/f4/al_theoretical.pdfhttps://www.energy.gov/sites/default/files/2013/11/f4/al_theoretical.pdf
52.
U.S. Energy Information Administration (EIA)
,
2023
,
Annual Energy Outlook 2023
,
EIA
,
Washington, DC
. https://www.eia.gov/outlooks/aeo/
53.
International Energy Agency (IEA)
,
2024
,
Electricity 2024: Analysis and Forecast to 2026
,
IEA
,
Paris, France
, https://www.iea.org/reports/electricity-2024https://www.iea.org/reports/electricity-2024
54.
Steinberg
,
D. C.
,
Brown
,
M.
,
Wiser
,
R.
,
Donohoo-Vallett
,
P.
,
Gagnon
,
P.
,
Hamilton
,
A.
,
Mowers
,
M.
,
Murphy
,
C.
, and
Prasanna
,
A.
,
2023
,
Evaluating Impacts of the Inflation Reduction Act and Bipartisan Infrastructure Law on the U.S. Power System
,
National Renewable Energy Laboratory (NREL)
,
Golden, CO
. https://www.nrel.gov/docs/fy23osti/85242.pdf
You do not currently have access to this content.