Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Hot molding is one of the efficient techniques for shaping viscoelastic materials such as glass. However, to prevent surface quality defects caused by the contact between molds during the shaping process, the mold should be carefully designed to provide unifying contact pressure. In this study, to reduce the distribution of contact pressure of molds, the mold's internal stiffness distribution was controlled using variable lattice optimization via molding. Control of stiffness in the contact direction was achieved using unit cell shapes that included beam structures, and the range of effective stiffness was expanded by combining multiple types of unit cells. In addition, contact and linear elastic calculations were performed separately to address the boundary nonlinearity problem in the contact analysis. The linear elastic calculation was performed by mapping the displacement distribution obtained in the contact analysis, and sensitivity calculation was performed for the linear elastic calculation. Using two examples with modified contact surface shapes, the proposed method's effectiveness and validity are discussed through numerical calculations with effective material properties, reproduced detailed shapes, and experimental verification. The numerical simulations revealed a reduction in the variance of contact pressure by 74% in the 2.5D examples and 68% in the 3D examples. Experimental results demonstrated a decrease in the variance of contact pressure by 29% in both the 2.5D and 3D examples.

References

1.
Pan
,
C. T.
,
Wu
,
T. T.
,
Chen
,
M. F.
,
Chang
,
Y. C.
,
Lee
,
C. J.
, and
Huang
,
J. C.
,
2008
, “
Hot Embossing of Micro-lens Array on Bulk Metallic Glass
,”
Sens. Actuators A
,
141
(
2
), pp.
422
431
.
2.
Yan
,
J.
,
Oowada
,
T.
,
Zhou
,
T.
, and
Kuriyagawa
,
T.
,
2009
, “
Precision Machining of Microstructures on Electroless-Plated NiP Surface for Molding Glass Components
,”
J. Mater. Process. Technol.
,
209
(
10
), pp.
4802
4808
.
3.
Dambon
,
O.
,
Wang
,
F.
,
Klocke
,
F.
,
Pongs
,
G.
,
Bresseler
,
B.
,
Chen
,
Y.
, and
Yi
,
A. Y.
,
2009
, “
Efficient Mold Manufacturing for Precision Glass Molding
,”
J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. Process. Meas. Phenom.
,
27
(
3
), pp.
1445
1449
.
4.
Yi
,
A. Y.
, and
Jain
,
A.
,
2005
, “
Compression Molding of Aspherical Glass Lenses—A Combined Experimental and Numerical Analysis
,”
J. Am. Ceram. Soc.
,
88
(
3
), pp.
579
586
.
5.
Sarhadi
,
A.
,
Hattel
,
J. H.
, and
Hansen
,
H. N.
,
2014
, “
Precision Glass Molding: Validation of an FE Model for Thermo-mechanical Simulation
,”
Int. J. Appl. Glass Sci.
,
5
(
3
), pp.
297
312
.
6.
Singh
,
S.
,
Darvishian
,
A.
,
Cho
,
J. Y.
,
Shiari
,
B.
, and
Najafi
,
K.
,
2019
, “
High-Q 3D Micro-shell Resonator With High Shock Immunity and Low Frequency Mismatch for MEMS Gyroscopes
,”
2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS)
,
Seoul, South Korea
,
Jan. 27–31
, pp.
668
671
.
7.
Frazier
,
W. E.
,
2014
, “
Metal Additive Manufacturing: A Review
,”
J. Mater. Eng. Perform.
,
23
(
6
), pp.
1917
1928
.
8.
Herzog
,
D.
,
Seyda
,
V.
,
Wycisk
,
E.
, and
Emmelmann
,
C.
,
2016
, “
Additive Manufacturing of Metals
,”
Acta Mater.
,
117
, pp.
371
392
.
9.
Gibson
,
I.
,
Rosen
,
D.
, and
Stucker
,
B.
,
2010
,
Additive Manufacturing Technologies
,
Springer
,
New York
.
10.
Fette
,
M.
,
Sander
,
P.
,
Wulfsberg
,
J.
,
Zierk
,
H.
,
Herrmann
,
A.
, and
Stoess
,
N.
,
2015
, “
Optimized and Cost-Efficient Compression Molds Manufactured by Selective Laser Melting for the Production of Thermoset Fiber Reinforced Plastic Aircraft Components
,”
Procedia CIRP
,
35
, pp.
25
30
.
11.
Hong
,
M.-P.
,
Kim
,
W.-S.
,
Sung
,
J.-H.
,
Kim
,
D.-H.
,
Bae
,
K.-M.
, and
Kim
,
Y.-S.
,
2018
, “
High-Performance Eco-friendly Trimming Die Manufacturing Using Heterogeneous Material Additive Manufacturing Technologies
,”
Int. J. Precis. Eng. Manuf. Green Technol.
,
5
(
1
), pp.
133
142
.
12.
Whlean
,
C.
, and
Sheahan
,
C.
,
2019
, “
Using Additive Manufacturing to Produce Injection Moulds Suitable for Short Series Production
,”
Procedia Manuf.
,
38
, pp.
60
68
.
13.
Shinde
,
M. S.
, and
Ashtankar
,
K. M.
,
2017
, “
Additive Manufacturing-Assisted Conformal Cooling Channels in Mold Manufacturing Processes
,”
Adv. Mech. Eng.
,
9
(
5
), p.
168781401769976
.
14.
Park
,
H.-S.
, and
Dang
,
X.-P.
,
2017
, “
Development of a Smart Plastic Injection Mold With Conformal Cooling Channels
,”
Procedia Manuf.
,
10
, pp.
48
59
.
15.
Hollister
,
S. J.
,
2005
, “
Porous Scaffold Design for Tissue Engineering
,”
Nat. Mater.
,
4
(
7
), pp.
518
524
.
16.
Kashdan
,
L.
,
Conner Seepersad
,
C.
,
Haberman
,
M.
, and
Wilson
,
P. S.
,
2012
, “
Design, Fabrication, and Evaluation of Negative Stiffness Elements Using SLS
,”
Rapid Prototyp. J.
,
18
(
3
), pp.
194
200
.
17.
Arabnejad Khanoki
,
S.
, and
Pasini
,
D.
,
2012
, “
Multiscale Design and Multiobjective Optimization of Orthopedic Hip Implants With Functionally Graded Cellular Material
,”
ASME J. Biomech. Eng.
,
134
(
3
), p.
031004
.
18.
Wang
,
X.
,
Xu
,
S.
,
Zhou
,
S.
,
Xu
,
W.
,
Leary
,
M.
,
Choong
,
P.
,
Qian
,
M.
,
Brandt
,
M.
, and
Xie
,
Y. M.
,
2016
, “
Topological Design and Additive Manufacturing of Porous Metals for Bone Scaffolds and Orthopaedic Implants: A Review
,”
Biomaterials
,
83
, pp.
127
141
.
19.
Takezawa
,
A.
,
Koizumi
,
Y.
, and
Kobashi
,
M.
,
2017
, “
High-Stiffness and Strength Porous Maraging Steel Via Topology Optimization and Selective Laser Melting
,”
Addit. Manuf.
,
18
, pp.
194
202
.
20.
Zhang
,
P.
,
Toman
,
J.
,
Yu
,
Y.
,
Biyikli
,
E.
,
Kirca
,
M.
,
Chmielus
,
M.
, and
To
,
A. C.
,
2015
, “
Efficient Design-Optimization of Variable-Density Hexagonal Cellular Structure by Additive Manufacturing: Theory and Validation
,”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), p.
021004
.
21.
Cheng
,
L.
,
Zhang
,
P.
,
Biyikli
,
E.
,
Bai
,
J.
,
Robbins
,
J.
, and
To
,
A.
,
2017
, “
Efficient Design Optimization of Variable-Density Cellular Structures for Additive Manufacturing: Theory and Experimental Validation
,”
Rapid Prototyp. J.
,
23
(
4
), pp.
660
677
.
22.
Panesar
,
A.
,
Abdi
,
M.
,
Hickman
,
D.
, and
Ashcroft
,
I.
,
2018
, “
Strategies for Functionally Graded Lattice Structures Derived Using Topology Optimisation for Additive Manufacturing
,”
Addit. Manuf.
,
19
, pp.
81
94
.
23.
Lynch
,
M. E.
,
Mordasky
,
M.
,
Cheng
,
L.
, and
To
,
A.
,
2018
, “
Design, Testing, and Mechanical Behavior of Additively Manufactured Casing With Optimized Lattice Structure
,”
Addit. Manuf.
,
22
, pp.
462
471
.
24.
Clausen
,
A.
,
Aage
,
N.
, and
Sigmund
,
O.
,
2016
, “
Exploiting Additive Manufacturing Infill in Topology Optimization for Improved Buckling Load
,”
Engineering
,
2
(
2
), pp.
250
257
.
25.
Wang
,
X.
,
Zhang
,
P.
,
Ludwick
,
S.
,
Belski
,
E.
, and
To
,
A. C.
,
2018
, “
Natural Frequency Optimization of 3D Printed Variable-Density Honeycomb Structure Via a Homogenization-Based Approach
,”
Addit. Manuf.
,
20
, pp.
189
198
.
26.
Cheng
,
L.
,
Liang
,
X.
,
Belski
,
E.
,
Wang
,
X.
,
Sietins
,
J. M.
,
Ludwick
,
S.
, and
To
,
A.
,
2018
, “
Natural Frequency Optimization of Variable-Density Additive Manufactured Lattice Structure: Theory and Experimental Validation
,”
ASME J. Manuf. Sci. Eng.
,
140
(
10
), p.
105002
.
27.
Takezawa
,
A.
,
Zhang
,
X.
,
Kato
,
M.
, and
Kitamura
,
M.
,
2019
, “
Method to Optimize an Additively-Manufactured Functionally-Graded Lattice Structure for Effective Liquid Cooling
,”
Addit. Manuf.
,
28
, pp.
285
298
.
28.
Cheng
,
L.
,
Liu
,
J.
,
Liang
,
X.
, and
To
,
A. C.
,
2018
, “
Coupling Lattice Structure Topology Optimization With Design-Dependent Feature Evolution for Additive Manufactured Heat Conduction Design
,”
Comput. Methods Appl. Mech. Eng.
,
332
, pp.
408
439
.
29.
Takezawa
,
A.
,
To
,
A. C.
,
Chen
,
Q.
,
Liang
,
X.
,
Dugast
,
F.
,
Zhang
,
X.
, and
Kitamura
,
M.
,
2020
, “
Sensitivity Analysis and Lattice Density Optimization for Sequential Inherent Strain Method Used in Additive Manufacturing Process
,”
Comput. Methods Appl. Mech. Eng.
,
370
, p.
113231
.
30.
Takezawa
,
A.
,
Chen
,
Q.
, and
To
,
A. C.
,
2021
, “
Optimally Variable Density Lattice to Reduce Warping Thermal Distortion of Laser Powder Bed Fusion
,”
Addit. Manuf.
,
48
(
Part B
), p.
102422
.
31.
Takezawa
,
A.
,
Guo
,
H.
,
Kobayashi
,
R.
,
Chen
,
Q.
, and
To
,
A. C.
,
2022
, “
Simultaneous Optimization of Hatching Orientations and Lattice Density Distribution for Residual Warpage Reduction in Laser Powder Bed Fusion Considering Layerwise Residual Stress Stacking
,”
Addit. Manuf.
,
60
(
Part A
), p.
103194
.
32.
Ueno
,
A.
,
Guo
,
H.
,
Takezawa
,
A.
,
Moritoyo
,
R.
, and
Kitamura
,
M.
,
2021
, “
Temperature Distribution Design Based on Variable Lattice Density Optimization and Metal Additive Manufacturing
,”
Symmetry
,
13
(
7
), p.
1194
.
33.
Guedes
,
J.
, and
Kikuchi
,
N.
,
1990
, “
Preprocessing and Postprocessing for Materials Based on the Homogenization Method With Adaptive Finite Element Methods
,”
Comput. Methods Appl. Mech. Eng.
,
83
(
2
), pp.
143
198
.
34.
Andreassen
,
E.
,
Lazarov
,
B. S.
, and
Sigmund
,
O.
,
2014
, “
Design of Manufacturable 3D Extremal Elastic Microstructure
,”
Mech. Mater.
,
69
(
1
), pp.
1
10
.
35.
Haug
,
E.
, and
Choi
,
K.
,
1986
,
Design Sensitivity Analysis of Structural Systems
,
Academic Press
,
Orlando, FL
.
36.
Stupkiewicz
,
S.
,
Korelc
,
J.
,
Dutko
,
M.
, and
Rodič
,
T.
,
2002
, “
Shape Sensitivity Analysis of Large Deformation Frictional Contact Problems
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
33
), pp.
3555
3581
.
37.
Niu
,
C.
,
Zhang
,
W.
, and
Gao
,
T.
,
2020
, “
Topology Optimization of Elastic Contact Problems With Friction Using Efficient Adjoint Sensitivity Analysis With Load Increment Reduction
,”
Comput. Struct.
,
238
, p.
106296
.
38.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes—A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
.
You do not currently have access to this content.