Abstract

Advanced manufacturing processes are often based on complex multiphysics phenomena that are either poorly understood or are computationally too expensive to simulate in the context of process design, control, or planning. Traditionally, simplified physics models with prescribed heuristics or purely data-driven surrogate models are used as alternatives in such applications. The concept of physics-informed machine learning (PIML) has been shown to have unique advantages over both of these alternatives in various fields of complex system analysis. In this paper, a new PIML approach is presented to model the geometry of the cut produced by a magnetically assisted laser-induced plasma micro-machining (M-LIPMM) process. This PIML architecture uses a neural network to auto-adapt the parametric boundary condition and physical properties used in a simplified finite difference-based physics model (of 2D heat conduction), as a function of the inputs namely the laser settings. This network also estimates the scaling and shifting parameters used by a convolutional neural network that takes the temperature profile predicted by the simplified heat conduction model to predict the width and depth of the machined cut. Trained on physical experiment data, the PIML approach compares favorably to a pure data-driven neural network model in extrapolation tests, while also providing physical insights (that the latter cannot). The PIML approach also provides an 85% better accuracy overall compared to the simplified physics model with heuristic settings.

References

1.
Hürkamp
,
A.
,
Gellrich
,
S.
,
Dér
,
A.
,
Herrmann
,
C.
,
Dröder
,
K.
, and
Thiede
,
S.
,
2021
, “
Machine Learning and Simulation-Based Surrogate Modeling for Improved Process Chain Operation
,”
Int. J. Adv. Manuf. Technol.
,
117
(
7
), pp.
2297
2307
.
2.
Misener
,
R.
, and
Biegler
,
L.
,
2023
, “
Formulating Data-Driven Surrogate Models for Process Optimization
,”
Computers & Chemical Engineering
,
179
, p.
108411
.
3.
Sahini
,
D. K.
,
Ghose
,
J.
,
Jha
,
S. K.
,
Behera
,
A.
, and
Mandal
,
A.
,
2020
, “Optimization and Simulation of Additive Manufacturing Processes:Challenges and Opportunities—A Review,”
Additive Manufacturing Applications for Metals and Composites
,
IGI Global Scientific Publishing
,
Hershey, PA
, pp.
187
209
.
4.
Sadati
,
N.
,
Chinnam
,
R. B.
, and
Nezhad
,
M. Z.
,
2018
, “
Observational Data-Driven Modeling and Optimization of Manufacturing Processes
,”
Expert Syst. Appl.
,
93
, pp.
456
464
.
5.
Pallav
,
K.
,
Saxena
,
I.
, and
Ehmann
,
K.
,
2015
, “
Laser-Induced Plasma Micromachining Process: Principles and Performance
,”
ASME J. Micro Nano Manufact.
,
3
(
3
), p.
031004
.
6.
Olakanmi
,
E. O.
,
Cochrane
,
R. F.
, and
Dalgarno
,
K. W.
,
2015
, “
A Review on Selective Laser Sintering/Melting (sls/slm) of Aluminium Alloy Powders: Processing, Microstructure, and Properties
,”
Prog. Mater. Sci.
,
74
, pp.
401
477
.
7.
Zhou
,
H.
,
Xu
,
Q.
,
Nie
,
Z.
, and
Li
,
N.
,
2022
, “
A Study on Using Image-Based Machine Learning Methods to Develop Surrogate Models of Stamp Forming Simulations
,”
ASME J. Manuf. Sci. Eng.
,
144
(
2
), p.
021012
.
8.
Jiang
,
J.
,
Xiong
,
Y.
,
Zhang
,
Z.
, and
Rosen
,
D. W.
,
2022
, “
Machine Learning Integrated Design for Additive Manufacturing
,”
J. Intel. Manufact.
,
33
(
4
), pp.
1073
1086
.
9.
Saunders
,
R. N.
,
Teferra
,
K.
,
Elwany
,
A.
,
Michopoulos
,
J. G.
, and
Lagoudas
,
D.
,
2023
, “
Metal Am Process-Structure-Property Relational Linkages Using Gaussian Process Surrogates
,”
Addit. Manuf.
,
62
, p.
103398
.
10.
Behjat
,
A.
,
Zeng
,
C.
,
Rai
,
R.
,
Matei
,
I.
,
Doermann
,
D.
, and
Chowdhury
,
S.
,
2020
, “
A Physics-Aware Learning Architecture With Input Transfer Networks for Predictive Modeling
,”
Appl. Soft Comput.
,
96
, p.
106665
.
11.
Rai
,
R.
, and
Sahu
,
C. K.
,
2020
, “
Driven by Data or Derived Through Physics? A Review of Hybrid Physics Guided Machine Learning Techniques With Cyber-Physical System (cps) Focus
,”
IEEE Access
,
8
, pp.
71050
71073
.
12.
Mojumder
,
S.
,
Gan
,
Z.
,
Li
,
Y.
,
Al Amin
,
A.
, and
Liu
,
W. K.
,
2023
, “
Linking Process Parameters With Lack-of-Fusion Porosity for Laser Powder Bed Fusion Metal Additive Manufacturing
,”
Addit. Manuf.
,
68
, p.
103500
.
13.
Gan
,
Z.
,
Kafka
,
O. L.
,
Parab
,
N.
,
Zhao
,
C.
,
Fang
,
L.
,
Heinonen
,
O.
,
Sun
,
T.
, and
Liu
,
W. K.
,
2021
, “
Universal Scaling Laws of Keyhole Stability and Porosity in 3D Printing of Metals
,”
Nat. Commun.
,
12
(
1
), p.
2379
.
14.
Guo
,
L.
,
Wang
,
H.
,
Liu
,
H.
,
Huang
,
Y.
,
Wei
,
Q.
,
Leung
,
C. L. A.
,
Wu
,
Y.
, and
Wang
,
H.
,
2023
, “
Understanding Keyhole Induced-Porosities in Laser Powder Bed Fusion of Aluminum and Elimination Strategy
,”
Int. J. Mach. Tools. Manuf.
,
184
, p.
103977
.
15.
Chang
,
Z.
, and
Chen
,
J.
,
2019
, “
Analytical Model and Experimental Validation of Surface Roughness for Incremental Sheet Metal Forming Parts
,”
Int. J. Mach. Tools. Manuf.
,
146
, p.
103453
.
16.
Mostafaei
,
A.
,
Elliott
,
A. M.
,
Barnes
,
J. E.
,
Li
,
F.
,
Tan
,
W.
,
Cramer
,
C. L.
,
Nandwana
,
P.
, and
Chmielus
,
M.
,
2021
, “
Binder Jet 3D Printing—Process Parameters, Materials, Properties, Modeling, and Challenges
,”
Prog. Mater. Sci.
,
119
, p.
100707
.
17.
Mujumdar
,
S. S.
,
Curreli
,
D.
,
Kapoor
,
S. G.
, and
Ruzic
,
D.
,
2014
, “
A Model of Micro Electro-Discharge Machining Plasma Discharge in Deionized Water
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031011
.
18.
Tapia
,
G.
,
Khairallah
,
S.
,
Matthews
,
M.
,
King
,
W. E.
, and
Elwany
,
A.
,
2018
, “
Gaussian Process-Based Surrogate Modeling Framework for Process Planning in Laser Powder-Bed Fusion Additive Manufacturing of 316l Stainless Steel
,”
Int. J. Adv. Manuf. Technol.
,
94
, pp.
3591
3603
.
19.
Sofi
,
A. R.
, and
Ravani
,
B.
,
2023
, “
Sub-Second Prediction of the Heatmap of Powder-Beds in Additive Manufacturing Using Deep Encoder–Decoder Convolutional Neural Networks
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
2
), p.
021008
.
20.
Tang
,
Y.
,
Dehaghani
,
M. R.
, and
Wang
,
G. G.
,
2023
, “
Review of Transfer Learning in Modeling Additive Manufacturing Processes
,”
Addit. Manuf.
,
61
, p.
103357
.
21.
Ferguson
,
M. K.
,
Ronay
,
A.
,
Lee
,
Y. -T. T.
, and
Law
,
K. H.
,
2018
, “
Detection and Segmentation of Manufacturing Defects With Convolutional Neural Networks and Transfer Learning
,”
Smart Sustainable Manuf. Syst.
,
2
, pp.
137
164
.
22.
Zhuang
,
F.
,
Qi
,
Z.
,
Duan
,
K.
,
Xi
,
D.
,
Zhu
,
Y.
,
Zhu
,
H.
,
Xiong
,
H.
, and
He
,
Q.
,
2021
, “
A Comprehensive Survey on Transfer Learning
,”
Proc. IEEE
,
109
(
1
), pp.
43
76
.
23.
Karniadakis
,
G. E.
,
Kevrekidis
,
I. G.
,
Lu
,
L.
,
Perdikaris
,
P.
,
Wang
,
S.
, and
Yang
,
L.
,
2021
, “
Physics-Informed Machine Learning
,”
Nat. Rev. Phys.
,
3
(
6
), pp.
422
440
.
24.
Mao
,
Z.
,
Jagtap
,
A. D.
, and
Karniadakis
,
G. E.
,
2020
, “
Physics-Informed Neural Networks for High-Speed Flows
,”
Comput. Methods Appl. Mech. Eng.
,
360
, p.
112789
.
25.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2019
, “
Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
,
378
, pp.
686
707
.
26.
Zhang
,
E.
,
Dao
,
M.
,
Karniadakis
,
G. E.
, and
Suresh
,
S.
,
2022
, “
Analyses of Internal Structures and Defects in Materials Using Physics-Informed Neural Networks
,”
Sci. Adv.
,
8
(
7
), p.
eabk0644
.
27.
Cai
,
S.
,
Mao
,
Z.
,
Wang
,
Z.
,
Yin
,
M.
, and
Karniadakis
,
G. E.
,
2021
, “
Physics-Informed Neural Networks (PINNs) for Fluid Mechanics: A Review
,”
Acta Mech. Sin.
,
37
(
12
), pp.
1727
1738
.
28.
Jagtap
,
A. D.
,
Kawaguchi
,
K.
, and
Karniadakis
,
G. E.
,
2020
, “
Adaptive Activation Functions Accelerate Convergence in Deep and Physics-Informed Neural Networks
,”
J. Comput. Phys.
,
404
, p.
109136
.
29.
Faroughi
,
S. A.
,
Soltanmohammadi
,
R.
,
Datta
,
P.
,
Mahjour
,
S. K.
, and
Faroughi
,
S.
,
2023
, “
Physics-Informed Neural Networks With Periodic Activation Functions for Solute Transport in Heterogeneous Porous Media
,”
Mathematics
,
12
(
1
), p.
63
.
30.
Li
,
Z.
,
Kovachki
,
N.
,
Azizzadenesheli
,
K.
,
Liu
,
B.
,
Bhattacharya
,
K.
,
Stuart
,
A.
, and
Anandkumar
,
A.
,
2020
, “
Fourier Neural Operator for Parametric Partial Differential Equations
,”
preprint
https://arxiv.org/abs/2010.08895.
31.
Lu
,
L.
,
Jin
,
P.
,
Pang
,
G.
,
Zhang
,
Z.
, and
Karniadakis
,
G. E.
,
2021
, “
Learning Nonlinear Operators Via Deeponet Based on the Universal Approximation Theorem of Operators
,”
Nat. Mach. Intell.
,
3
(
3
), pp.
218
229
.
32.
Cuomo
,
S.
,
Di Cola
,
V. S.
,
Giampaolo
,
F.
,
Rozza
,
G.
,
Raissi
,
M.
, and
Piccialli
,
F.
,
2022
, “
Scientific Machine Learning Through Physics-Informed Neural Networks: Where We Are and What’s Next
,”
J. Sci. Comput.
,
92
(
3
), p.
88
.
33.
Yang
,
Z.
,
Eddy
,
D.
,
Krishnamurty
,
S.
,
Grosse
,
I.
,
Denno
,
P.
,
Lu
,
Y.
, and
Witherell
,
P.
,
2017
, “Investigating Grey-Box Modeling for Predictive Analytics in Smart Manufacturing,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 58134
,
Cleveland, OH
,
Aug. 6–9
, American Society of Mechanical Engineers, p. V02BT03A024.
34.
Manoharan
,
S.
, and
Haapala
,
K. R.
,
2019
, “
A Grey Box Software Framework for Sustainability Assessment of Composed Manufacturing Processes: A Hybrid Manufacturing Case
,”
Proc. CIRP
,
80
, pp.
440
445
.
35.
Young
,
C.-C.
,
Liu
,
W.-C.
, and
Wu
,
M.-C.
,
2017
, “
A Physically Based and Machine Learning Hybrid Approach for Accurate Rainfall-Runoff Modeling During Extreme Typhoon Events
,”
Appl. Soft Comput.
,
53
, pp.
205
216
.
36.
Nourani
,
V.
,
Alami
,
M. T.
, and
Aminfar
,
M. H.
,
2009
, “
A Combined Neural-Wavelet Model for Prediction of Ligvanchai Watershed Precipitation
,”
Eng. Appl. Artif. Intell.
,
22
(
3
), pp.
466
472
.
37.
Singh
,
S. K.
,
Yang
,
R.
,
Behjat
,
A.
,
Rai
,
R.
,
Chowdhury
,
S.
, and
Matei
,
I.
,
2019
, “
Pi-lstm: Physics-Infused Long Short-Term Memory Network
,”
International Conference on Machine Learning and Applications (ICMLA)
,
Boca Raton, FL
,
Dec. 16–19
, IEEE, pp.
34
41
.
38.
Javed
,
K.
,
2014
, “
A Robust & Reliable Data-Driven Prognostics Approach Based on Extreme Learning Machine and Fuzzy Clustering
,” Ph.D. thesis, Université de Franche-Comté, Besançon, Franche-Comté, France.
39.
Cheng
,
S.
, and
Pecht
,
M.
,
2009
, “
A Fusion Prognostics Method for Remaining Useful Life Prediction of Electronic Products
,”
IEEE International Conference on Automation Science and Engineering
,
Bangalore, India
,
Aug. 22–25
, IEEE, pp.
102
107
.
40.
Karpatne
,
A.
,
Watkins
,
W.
,
Read
,
J.
, and
Kumar
,
V.
,
2017
, “
Physics-Guided Neural Networks (pgnn): An Application in Lake Temperature Modeling
,”
preprint
. https://arxiv.org/abs/1710.11431
41.
Salvati
,
E.
,
Tognan
,
A.
,
Laurenti
,
L.
,
Pelegatti
,
M.
, and
De Bona
,
F.
,
2022
, “
A Defect-Based Physics-Informed Machine Learning Framework for Fatigue Finite Life Prediction in Additive Manufacturing
,”
Mater. Des.
,
222
, p.
111089
.
42.
Guo
,
W.
,
Tian
,
Q.
,
Guo
,
S.
, and
Guo
,
Y.
,
2020
, “
A Physics-Driven Deep Learning Model for Process-Porosity Causal Relationship and Porosity Prediction With Interpretability in Laser Metal Deposition
,”
CIRP Ann.
,
69
(
1
), pp.
205
208
.
43.
Zhu
,
Q.
,
Liu
,
Z.
, and
Yan
,
J.
,
2021
, “
Machine Learning for Metal Additive Manufacturing: Predicting Temperature and Melt Pool Fluid Dynamics Using Physics-Informed Neural Networks
,”
Comput. Mecha.
,
67
, pp.
619
635
.
44.
Ren
,
Y.
,
Wang
,
Q.
, and
Michaleris
,
P.
,
2021
, “
A Physics-Informed Two-Level Machine-Learning Model for Predicting Melt-Pool Size in Laser Powder Bed Fusion
,”
ASME J. Dyn. Syst. Meas. Control
,
143
(
12
), p.
121006
.
45.
Mondal
,
B.
,
Mukherjee
,
T.
, and
DebRoy
,
T.
,
2022
, “
Crack Free Metal Printing Using Physics Informed Machine Learning
,”
Acta Mater.
,
226
, p.
117612
.
46.
Wu
,
P.
,
Dai
,
H.
,
Li
,
Y.
,
He
,
Y.
,
Zhong
,
R.
, and
He
,
J.
,
2022
, “
A Physics-Informed Machine Learning Model for Surface Roughness Prediction in Milling Operations
,”
Int. J. Adv. Manuf. Technol.
,
123
(
11
), pp.
4065
4076
.
47.
Wang
,
K.
,
Zeng
,
M.
,
Wang
,
J.
,
Shang
,
W.
,
Zhang
,
Y.
,
Luo
,
T.
, and
Dowling
,
A. W.
,
2023
, “
When Physics-Informed Data Analytics Outperforms Black-Box Machine Learning: A Case Study in Thickness Control for Additive Manufacturing
,”
Digital Chem. Eng.
,
6
, p.
100076
.
48.
Niaki
,
S. A.
,
Haghighat
,
E.
,
Campbell
,
T.
,
Poursartip
,
A.
, and
Vaziri
,
R.
,
2021
, “
Physics-Informed Neural Network for Modelling the Thermochemical Curing Process of Composite-Tool Systems During Manufacture
,”
Comput. Methods. Appl. Mech. Eng.
,
384
, p.
113959
.
49.
Malhotra
,
R.
,
Saxena
,
I.
,
Ehmann
,
K.
, and
Cao
,
J.
,
2013
, “
Laser-Induced Plasma Micro-Machining (LIPMM) for Enhanced Productivity and Flexibility in Laser-Based Micro-Machining Processes
,”
CIRP Ann.
,
62
(
1
), pp.
211
214
.
50.
Cleeman
,
J.
,
Guo
,
W.
, and
Malhotra
,
R.
,
2023
, “Magnetically Assisted Laser Induced Plasma Micromachining (M-LIPMM),” International Manufacturing Science and Engineering Conference, Vol. 87240, American Society of Mechanical Engineers, p. V002T06A026.
51.
Iqbal
,
R.
,
Behjat
,
A.
,
Adlakha
,
R.
,
Callanan
,
J.
,
Nouh
,
M.
, and
Chowdhury
,
S.
,
2023
, “
Auto-differentiable Transfer Mapping Architecture for Physics-Infused Learning of Acoustic Field
,”
IEEE Trans. Artif. Intell.
,
5
(
3
), pp.
1132
1146
.
52.
Oddiraju
,
M.
,
Amin
,
D.
,
Piedmonte
,
M.
, and
Chowdhury
,
S.
,
2023
, “
Physics Infused Machine Learning Based Prediction of Vtol Aerodynamics With Sparse Datasets
,”
AIAA AVIATION 2023 Forum
, p.
4376
.
53.
Zhang
,
Y.
,
Bhandari
,
S.
,
Xie
,
J.
,
Zhang
,
G.
,
Zhang
,
Z.
, and
Ehmann
,
K.
,
2021
, “
Investigation on the Evolution and Distribution of Plasma in Magnetic Field Assisted Laser-Induced Plasma Micro-Machining
,”
J. Manufact. Process.
,
71
, pp.
197
211
.
54.
Jaluria
,
Y.
,
2017
,
Computational Heat Transfer
,
Routledge
,
Milton Park, Abingdon, UK
.
You do not currently have access to this content.