The influence of static mechanisms on fatigue crack propagation in Ti and Ti-V microalloyed steels is considered. Small inclusions originate void nucleation. In contrast, TiN coarse particles contribute to the formation of bursts of cleavage in the fatigue zone. Taking into account the microstructural characteristics of the matrix that surrounds the particle, the microcrack can be confined within the particle or propagate along the matrix forming a cleavage burst. The influence on macroscopic crack propagation of both types of static micromechanisms is considered. [S0094-4289(00)00902-6]
Issue Section:
Technical Papers
1.
Ritchie
, R. O.
, and Knott
, J. F.
, 1973
, “Mechanisms of Fatigue Crack Growth in Low Alloy Steels
,” Acta Met.
, 21
, p. 639
639
.2.
Beevers
, C. J.
, Cooke
, R. J.
, Knott
, J. F.
, and Ritchie
, R. O.
, 1975
, “Some Considerations of the Influence of Subcritical Cleavage Growth During Fatigue-Crack Propagation in Steels
,” Met. Sci.
, 9
, p. 119
119
.3.
Nicholson
, A.
, and Gladman
, T.
, 1986
, “Non-Metallic Inclusions and Development in Secondary Steelmaking
” Ironmaking and Steelmaking
, 13
, p. 53
53
.4.
Wilson, A. D., 1984, “Fatigue Crack Propagation in Steels: The Role of Inclusions,” Fracture: Interactions of Microstructure, Mechanisms and Mechanics, J. M. Wells and J. D. Landes, eds., AIME, p. 235.
5.
Naylor
, D. J.
, 1989
, “Review of International Activity on Microalloyed Engineering Steels
” Ironmaking and Steelmaking
, 16
, p. 246
246
.6.
Naylor
, D. J.
, 1998
, “Microalloyed Forging Steels
” Mater. Sci. Forum
, 284–286
, p. 83
83
.7.
Linaza
, M. A.
, Rodriguez-Ibabe
, J. M.
, and Urcola
, J. J.
, 1997
, “Determination of the Energetic Parameters Controlling Cleavage Fracture Initiation in Steels
,” Fatigue Fract. Eng. Mater. Struct.
, 20
, p. 619
619
.8.
LaGreca, P. D., Matlock, D. K., and Krauss, G., 1996, “Short-rod Fracture Toughness Testing of Microalloyed Steels as a Function of Sulfur and Intragranular Ferrite Content,” Fundamentals and Applications of Microalloyed Forging Steels, C. J. Van Tyne et al., eds., TMS, Warrendale, p. 357.
9.
Linaza
, M. A.
, Romero
, J. L.
, Rodriguez-Ibabe
, J. M.
, and Urcola
, J. J.
, 1993
, “Influence of the Microstructure on the Fracture Toughness and Fracture Mechanisms of Forging Steels Microalloyed with Ti with Ferrite-Pearlite Structures
,” Scr. Metall. Mater.
, 29
, p. 451
451
.10.
Linaza
, M. A.
, Romero
, J. L.
, Rodriguez-Ibabe
, J. M.
, and Urcola
, J. J.
, 1995
, “Cleavage Fracture of Microalloyed Forging Steels
,” Scr. Metall. Mater.
, 32
, p. 395
395
.11.
Tanaka, Y., and Soya, Y., 1990, “Metallurgical and Mechanical Factors Affecting Fatigue Crack Propagation and Crack Closure in Various Structural Steels,” Fatigue 90, H. Kitagawa and T. Tanaka, eds., MCE Publications, Vol. 2, p. 1143.
12.
Costa
, J. D. M.
, and Ferreira
, J. A. M.
, 1998
, “Effect of Stress Ratio and Specimen Thickness on Fatigue Crack Growth of CK45 Steel
,” Theor. Appl. Fract. Mech.
, 30
, p. 65
65
.13.
Rodriguez-Ibabe, J. M., and Gil-Sevillano, J., 1984, “Fatigue Crack Path in Medium-high Carbon Ferrite-Pearlite Structures,” Advances in Fracture Research, S. R. Valluri et al., eds., Pergamon Press, 3, p. 2073.
14.
Bulloch
, J. H.
, 1992
, “Effects of Mean Stress on the Threshold Fatigue Crack Extension Rates of Two Spherical Graphite Cast Irons
,” Theor. Appl. Fract. Mech.
, 18
, p. 15
15
.15.
Linaza, M. A., Rodriguez-Ibabe, J. M., and Fuentes, M., 1992, “Fatigue Crack Growth and Closure Behavior of Pressure Vessel C-Mn Welded Steels,” Reliability and Structural Integrity of Advanced Materials, S. Sedmak et al., eds., EMAS, Vol. 1, p. 397.
16.
Herman, J. C., Messien, P., and Greday, T., 1982, “HSLA Ti Containing Steels,” Thermomechanical Processing of Microalloyed Austenite, A. J. DeArdo et al., eds., AIME, Warrendale, p. 655.
17.
Brooksbank
, D.
, and Andrews
, K. W.
, 1968
, “Thermal Expansion of Some Inclusions Found in Steels and Relation to Tessellated Stresses
,” JISI
, 206
, p. 595
595
.18.
Bowen
, P.
, Druce
, S. G.
, and Knott
, J. F.
, 1987
, “Micromechanical Modelling of Fracture Toughness
,” Acta Metall.
, 35
, p. 1735
1735
.19.
Landes
, J. D.
, Heerens
, J.
, Schwalbe
, K. H.
, and Petrovski
, B.
, 1993
, “Size, Thickness and Geometry Effects on Transition Fracture
,” Fatigue Fract. Eng. Mater. Struct.
, 16
, p. 1135
1135
.20.
Linaza, M. A., Romero, J. L., Rodriguez-Ibabe, J. M., and Urcola, J. J., 1997, “Influence of Thermomechanical Treatments on the Microstructure and Toughness of Microalloyed Engineering Steels,” Thermomechanical Processing in Theory, Modelling and Practice, B. Hutchinson et al., eds., SFMC, p. 351.
21.
Knott, J. F., and King, J. E., 1990, “Fatigue in Metallic Alloys Containing Non-Metallic Particles,” Fatigue 90, H. Kitagawa and T. Tanaka, eds., MCE Publications, Vol. 4, p. 2557.
22.
San Martin
, I.
, and Rodriguez-Ibabe
, J. M.
, 1999
, “Determination of the Energetic Parameters Controlling Cleavage Fracture in a Ti-V Microalloyed Ferrite-Pearlite Steel
,” Script. Mat.
, 40
, p. 459
459
.23.
Bompard, P. H., and Franc¸ois, D., 1984, “Effect of Porosity on Fatigue Crack Propagation in Sintered Nickel,” Advances in Fracture Research, S. R. Valluri et al., eds., Vol. 3, p. 2049.
Copyright © 2000
by ASME
You do not currently have access to this content.