In order to analyze the anisotropic hardening behavior of metals, an off-axis torsion test by combined loading is developed. In this test, the maximum shear stress direction φ can be changed from 0 deg to 90 deg while the ratio of maximum and minimum principal stresses is kept at −1. With increasing angle φ, the yield stress of the torsional-prestrained steel decreases; the difference between the directions of the maximum shear stress and principal shear strain increment rises to a maximum value and then decreases. It is experimentally verified that anisotropy is more severe when a smaller offset strain is used in defining the yield stress.
Issue Section:
Technical Papers
1.
Svennson
, N. L.
, 1966
, “Anisotropy and Bauschinger Effect in Cold Rolled Aluminium
,” J. Mech. Eng. Sci.
, 8
, 162
–172
.2.
Ikegami, K., 1979, “Experimental Plasticity on the Anisotropy of Metals,” Mechanical Behavior of Anisotropic Solids, Proc. Euromech Colloquium 115, Institute de Mechanique, Grenoble, pp. 201–242.
3.
Rees
, D. W.
, 1981
, “Anisotropic Hardening Theory and the Bauschinger Effect
,” J. Strain Analysis
, 16
, pp. 85
–95
.4.
Inoue
, T.
, and Hoshide
, T.
, 1989
, “Experimental Procedures for Combined Loading and Mechanical Behavior of Materials under Multiaxial Stresses
,” J. Soc. Mater. Sci. Jpn.
, 38
, pp. 1231
–1240
.5.
Khan
, A. S.
, and Wang
, X.
, 1993
, “An Experimental Study on Subsequent Yield Surface after Finite Shear Prestraining
,” Int. J. Plast.
, 9
, pp. 889
–905
.6.
Williams
, J. F.
, and Svensson
, N. L.
, 1971
, “Effect of Torsional Prestrain on the Yield Locus of 1100-F Aluminium
,” J. Strain Anal.
, 6
, pp. 263
–272
.7.
Shiratori
, E.
, Ikegami
, K.
, Kaneko
, K.
, Yoshida
, F.
, and Koike
, S.
, 1976
, “The Subsequent Yield Surfaces after Preloading under Combined Axial Load and Torsion
,” Bull. JSME
, 19
, pp. 877
–883
.8.
Helling
, D. E.
, Miller
, A. K.
, and Stout
, M. G.
, 1986
, “An Experimental Investigation of the Yield Loci of 1100-O Aluminum, 70:30 Brass, and an Overaged 2024 Aluminum Alloy after Various Prestress
,” ASME J. Eng. Mater. Technol.
, 108
, pp. 313
–320
.9.
Yoshimura
, Y.
, 1959
, “Hypothetical Theory of Anisotropy and the Bauschinger Effect due to Plastic Strain History
,” Aero. Res. Inst., Univ. of Tokyo, Report No. 349, pp. 221
–247
.10.
Kishi
, T.
, and Horiuchi
, R.
, 1975
, “Bauschinger Effect and Planar Anisotropy of Al and Al-Mg Alloys
,” Trans. Jpn. Inst. Met.
, 39
, pp. 92
–98
.11.
Takeda
, T.
, Shiratori
, E.
, Ikegami
, K.
, Kumakura
, S.
, and Nasu
, Y.
, 1982
, “Plastic Behavior of Aged Mild Steel
,” Bull. JSME
, 25
, pp. 149
–156
.12.
Lemaitre, L., and Chaboche, J.-L. 1985, Mechanics of Solid Materials, Cambridge Univ. Press, p. 77.
13.
Dowling, N. E., 1993, Mechanical Behavior of Materials, Prentice-Hall, Englewood Cliffs, NJ, p. 151.
14.
Takeda
, T.
, and Chen
, Z.
, 1999
, “Yield Behavior of a Mild Steel after Prestraining and Aging under Reversed Stress
,” Metall. Mater. Trans. A
, 30A
, pp. 411
–416
.15.
Mallick
, K.
, Samanta
, S. K.
, and Kumar
, A.
, 1991
, “An Experimental Study of the Evolution of Yield Loci for Anisotropic Materials Subjected to Finite Shear Deformation
,” ASME J. Eng. Mater. Technol.
, 113
, pp. 192
–198
.16.
Kumakura
, S.
, 1968
, “The Bauschinger Effect in Carbon Steel
,” Bull. JSME
, 11
, pp. 426
–436
.17.
Hayashi
, I.
, Kawaguchi
, K.
, and Fukuda
, H.
, 1970
, “An Experimental Study on the Subsequent Yield Surfaces of Mild Steel
,” J. Jpn. Soc. Technol. Plast.
, 11
, pp. 17
–23
.18.
Mroz, Z., and Niemunis, A., 1987, “On the Description of Deformation Anisotropy of Materials,” Yielding, Damage, and Failure of Anisotropic Solids, Proc. IUTAM/ICM Symp., Mech. Eng. Publications, London, pp. 171–186.
19.
Takeda
, T.
, Chen
, Z.
, Kikuchi
, S.
, and Tanimura
, Y.
, 1998
, “Mutiaxial Yield Behavior of Mild Steel in Stress Aging Process
,” J. Japan Soc. Technol. Plast.
, 39
, pp. 1118
–1122
.20.
Chen
, Z.
, Maekawa
, S.
, and Takeda
, T.
, 1999
, “Bauschinger Effect and Multiaxil Yield Behavior of Stress-Reversed Mild Steel
,” Metall. Mater. Trans. A
, 30A
, pp. 3069
–3078
.21.
Stout
, M. G.
, Martin
, P. L.
, Helling
, D. E.
, and Canova
, G. R.
, 1985
, “Multiaxial Yield Behavior of 1100 Aluminum Following Various Magnitudes of Prestrain
,” Int. J. Plast.
, 1
, pp. 163
–174
.22.
Takeda
, T.
, and Nasu
, Y.
, 1991
, “Evaluation of Yield Function Including Effects of Third Stress Invariant and Initial Anisotropy
,” J. Strain Anal.
, 26
, pp. 47
–53
.23.
Ohashi
, Y.
, and Tokuda
, M.
, 1973
, “Precise Measurement of Plastic Behavior of Mild Steel Tubular Specimens Subjected to Combined Torsion and Axial Force
,” J. Mech. Phys. Solids
, 21
, pp. 241
–261
.24.
Drucker
, D. C.
, 1949
, “Relation of Experiments to Mathematical Theories of Plasticity
,” ASME J. Appl. Mech.
, 16
, pp. 349
–357
.Copyright © 2001
by ASME
You do not currently have access to this content.