In-plane mechanical properties of periodic honeycomb structures with seven different cell types are investigated in this paper. Emphasis is placed on honeycombs with relative density between 0.1 and 0.3, such that initial yield is associated with short column compression or bending, occurring prior to elastic buckling. Effective elastic stiffness and initial yield strength of these metal honeycombs under in-plane compression, shear, and diagonal compression (for cell structures that manifest in-plane anisotropy) are reported as functions of relative density. Comparison among different honeycomb structures demonstrates that the diamond cells, hexagonal periodic supercells composed of six equilateral triangles and the Kagome cells have superior in-plane mechanical properties among the set considered.

1.
Ashby, M. F., Evans, A., Fleck, N. A., Gibson, L. J., Hutchinson, J. W., and Wadley, H. N. G., 2000, Metal Foams: A Design Guide, Butterworth-Heinemann, Boston.
2.
Cochran, J., Lee, K. J., McDowell, D., Sanders, T, Church, B., Clark, J., Dempsey, B., Hayes, A., Hurysz, K., McCoy, T., Nadler, J., Oh, R., Seay, W., and Shapiro, B., 2000, “Low Density Monolithic Metal Honeycombs by Thermal Chemical Processing,” Fourth Conference on Aerospace Materials, Processes and Environmental Technology, Huntsville, Alabama, September 18–20, 2000.
3.
Gibson, L. J., and Ashby, M. F., 1997, Cellular Solids: Structure and Properties, 2nd ed., Cambridge University Press.
4.
Kelsey
,
S.
,
Gellatly
,
R. A.
, and
Clark
,
B. W.
,
1958
, “
The Shear Modulus of Foil Honeycombs Cores
,”
Aircraft Eng.
,
30
, pp.
294
302
.
5.
Grediac
,
M.
,
1993
, “
A Finite Element Study of the Transverse Shear in Honeycomb Cores
,”
Int. J. Solids Struct.
,
30
(
13
), pp.
1777
1788
.
6.
Papka
,
S. D.
, and
Kyriakides
,
S.
,
1998
, “
Experiments and Full-Scale Numerical Simulations of In-Plane Crushing of a Honeycombs
,”
Acta Mater.
,
46
(
8
), pp.
2765
2776
.
7.
Triantafyllidis
,
N.
, and
Schraad
,
M. W.
,
1998
, “
Onset of Failure in Aluminum Honeycombs Under General In-Plane Loading
,”
J. Mech. Phys. Solids
,
46
(
6
), pp.
1089
1124
.
8.
Onck
,
P. R.
,
Andrews
,
E. W.
, and
Gibson
,
L. J.
,
2001
, “
Size Effects in Ductile Cellular Solids, Part I: Modeling
,”
Int. J. Mech. Sci.
,
43
, pp.
681
699
.
9.
Andrews
,
E. W.
,
Gioux
,
G.
,
Onck
,
P.
, and
Gibson
,
L. J.
,
2001
, “
Size Effects in Ductile Cellular Solids. Part II: Experimental Results
,”
Int. J. Mech. Sci.
,
43
, pp.
701
713
.
10.
Zhang
,
J.
, and
Ashby
,
M. F.
,
1992
, “
Buckling of Honeycombs Under In-Plane Biaxial Stresses
,”
Int. J. Mech. Sci.
,
34
(
6
), pp.
491
509
.
11.
Gu
,
S.
,
Lu
,
T. J.
, and
Evans
,
A. G.
,
2001
, “
On the Design of Two-Dimensional Cellular Metals for Combined Heat Dissipation and Structural Load Capacity
,”
Int. J. Heat Mass Transfer
,
44
, pp.
2163
2175
.
12.
Torquato
,
S.
,
Gibiansky
,
L. V.
,
Silva
,
M. J.
, and
Gibson
,
L. J.
,
1998
, “
Effective Mechanical and Transport Properties of Cellular Solids
,”
Int. J. Mech. Sci.
,
40
(
1
), pp.
71
82
.
13.
Christensen
,
R. M.
,
1986
, “
Mechanics of Low Density Materials
,”
J. Mech. Phys. Solids
,
34
(
6
), pp.
563
578
.
14.
Hunt
,
H. E. M.
,
1993
, “
The Mechanical Strength of Ceramic Honeycomb Monoliths as Determined by Simple Experiments
,”
Trans IChemE
,
71, Part A
, pp.
257
266
.
15.
Santosa
,
S.
, and
Wierzbicki
,
T.
,
1999
, “
Effect of an Ultralight Metal Filler on the Bending Collapse Behavior of Thin-Walled Prismatic Columns
,”
Int. J. Mech. Sci.
,
41
, pp.
995
1019
.
16.
Gulati S. T., 1975, “Effects of Cell Geometry on Thermal Shock Resistance of Catalytic Monoliths,” Automotive Engineering Congress and Exposition, Society of Automotive Engineers, Detroit, MI.
17.
Deshpande
,
V. S.
,
Ashby
,
M. F.
, and
Fleck
,
N. A.
,
2001
, “
Foam Topology Bending Versus Stretching Dominated Architectures
,”
Acta Mater.
,
49
, pp.
1035
1040
.
18.
Timoshenko, S. P., and Gere, J. M., 1961, Theory of Elastic Stability, 2nd ed. McGraw-Hill, New York.
19.
Gere, J. M., and Timoshenko, S. P., 1984, Mechanics of Materials, 2nd Ed. Wadsworth Inc.
20.
Evans
,
A. G.
,
Hutchinson
,
J. W.
,
Fleck
,
N. A.
,
Ashby
,
M. F.
, and
Wadley
,
H. N. G.
,
2001
, “
The Topological Design of Multifunctional Cellular Metals
,”
Prog. Mater. Sci.
,
46
, pp.
309
327
.
21.
Syozi
,
I.
,
1951
, “
Statistics of Kagome Lattice
,”
Prog. Theor. Phys.
,
6
(
3
), pp.
306
308
.
22.
Hyun
,
S.
, and
Torquato
,
S.
,
2002
, “
Optimal and Manufacturable Two-Dimensional, Kagome-Like Cellular Solids
,”
J. Mater. Res.
,
17
(
1
), pp.
137
144
.
23.
Shah, R. K., and London, A. L., 1978, Laminar Flow Forced Convection in Ducts, Academic Press, New York.
24.
Lim
,
T. J.
,
Smith
,
B.
, and
McDowell
,
D. L.
,
2002
, “
Behavior of a Random Hollow Sphere Metal Foam
,”
Acta Mater.
,
50
(
11
), pp.
2867
2879
.
You do not currently have access to this content.