Thermal cycling has been experimentally demonstrated to diminish the performance of many reinforced materials. The coefficient of thermal expansion mismatch is the driving force for the development of high self-equilibrating stresses and strains in the vicinity of the reinforcement. To glean the magnitude of these stresses, a simple geometry, a spherical particulate (SiC) in a spherical domain (aluminum W319) was investigated. A set of partitioned strain rate equations considered temperature dependent material properties for thermal, elastic, mechanical plastic, and creep plastic deformation. The mechanical plasticity model utilized an improved Armstrong-Fredrick kinematic hardening algorithm and a Fisher type rate dependent yield criteria. A hyperbolic sine relation proposed by Dorn (1954, “Some Fundamental Experiments on High Temperature Creep,” J. Mech. Phys. Solids, 3, pp. 85–116) was used to model creep deformation. A multidimensional residual stress state due to cooling from the molten state was considered in the simulations. Two damage parameters, Findley and equivalent plastic strain, were employed to estimate cyclic damage. While the life estimates are crude, they both predict finite lives for reasonable service temperature ranges.

1.
Halford
,
G. R.
,
Lerch
,
B. A.
,
Saltsman
,
J. F.
, and
Arya
,
V. K.
, 1993, “
Proposed Framework for Thermomechanical Fatigue (TMF) Life Prediction of Metal Matrix Composites (MMCs)
,”
Thermomechanical Fatigue Behavior of Materials
,
ASTM STP 1186
,
H.
Sehitoglu
, ed.,
American Society for Testing and Materials
,
Philadelphia
, pp.
176
194
.
2.
Eshelby
,
J. D.
, 1957, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,”
Proc. R. Soc. London, Ser. A
1364-5021,
241
, pp.
376
396
.
3.
Mura
,
T.
, 1982,
Micromechanics of Defects in Solids
,
Kluwer Academic
,
Boston
.
4.
Johannesson
,
B.
,
Ogin
,
S. L.
,
Surappa
,
M. K.
,
Tsakiropoulos
,
P.
,
Brynjolfsson
,
S.
, and
Thorbjornsson
,
I. O.
, 2001, “
Effect of Reinforcement Geometry on Matrix Stresses in Three Aluminum Metal Matrix Composite Systems
,”
Scr. Mater.
1359-6462,
45
, pp.
993
1000
.
5.
Bao
,
G.
,
Hutchinson
,
J. W.
, and
McMeeking
,
R. M.
, 1991, “
Partical Reinforcement of Ductile Matrices Against Plastic Flow and Creep
,”
Acta Mater.
1359-6454,
39.8
, pp.
1871
1882
.
6.
Varma
,
V. K.
,
Kamat
,
S. V.
,
Mahajan
,
Y. R.
, and
Kutumbarao
,
V. V.
, 2001, “
Effect of Reinforcement Size on Low Strain Yielding Behavior in Al-Cu-Mg∕SiC Composites
,”
Mater. Sci. Eng., A
0921-5093,
318
, pp.
57
64
.
7.
Shoopman
,
S. W.
, 1992, “
Casting of Aluminum Silicon Carbide Metal Matrix Composites
,” MS thesis, UIUC.
8.
Hashin
,
Z.
, 1985, “
Large Isotrophic Elastic Deformation of Composites and Porous Media
.”
Int. J. Solids Struct.
0020-7683,
21.7
, pp.
711
720
.
9.
Moschovidis
,
Z. A.
, and
Mura
,
T.
, 1975, “
Two-Ellipsoidal Inhomogeneities by the Equivalent Inclusion Method
,”
ASME J. Appl. Mech.
0021-8936,
42
, pp.
847
852
.
10.
Xue
,
Z.
,
Huang
,
Y.
, and
Li
,
M.
, 2002, “
Particle Size Effect in Metallic Materials: A Study by the Theory of Mechanism-Based Strain Gradient Plasticity
,”
Acta Mater.
1359-6454,
50
, pp.
149
160
.
11.
Van Arsdell
,
W. W.
, 1993, “
The Effect of Particle Size on the Thermomechanical Farigue of Metal Matrix Composites
,” MS thesis, UIUC.
12.
Brooksbank
,
D.
, and
Andrews
,
K. W.
, 1972, “
Stress Fields Around Inclusions and Their Relation to Mechanical Properties
,”
J. Iron Steel Inst., London
0021-1567,
210
, pp.
246
255
.
13.
Taya
,
M.
, and
Mori
,
T.
, 1987, “
Modeling of Dimensional Change in Metal Matrix Composite Subjected to Thermal Cycling
,” Thermomechanical Couplings in Solids IUTAM, pp.
147
162
.
14.
Olsson
,
M.
,
Giannakopoulos
,
A. E.
, and
Suresh
,
S.
, 1995, “
Elastoplastic Analysis of Thermal Cycling: Ceramic Particles in a Metallic Matrix
,”
J. Mech. Phys. Solids
0022-5096,
43
(
10
), pp.
1639
1671
.
15.
Kohout
,
J.
, 2000, “
Temperature Dependence of Stress-Lifetime Fatigue Curves
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
23
, pp.
969
977
.
16.
Arpon
,
R.
,
Molina
,
J. M.
,
Saravanan
,
R. A.
,
Garcia-Cordovilla
,
C.
,
Louis
,
E.
, and
Narciso
,
J.
, 2003, “
Thermal Expansion Behavior of Aluminum/SiC Composites With Bimodal Particle Distributions
,”
Acta Mater.
1359-6454,
51.11
, pp.
3145
3156
.
17.
Dushman
,
S.
,
Dunbar
,
L. W.
, and
Huthsteiner
,
H.
, 1994, “
Creep of Metals
J. Appl. Phys.
0021-8979,
15
, pp.
108
124
.
18.
Suresh
,
S.
, 1998,
Fatigue of Metals
,
Cambridge University Press
,
New York
.
19.
Findley
,
W. N.
, 1959, “
A Theory for the Effect of Mean Stress on Fatigue of Metals Under Combined Torsion and Axial Load or Bending
,”
ASME J. Eng. Ind.
0022-0817,
81
, pp.
301
306
.
20.
Gould
,
P. L.
, 1994,
Introduction to Linear Elasticity
,
Springer
,
New York
.
21.
Saleeb
,
A. F.
, and
Arnold
,
S. M.
, 2004, “
Specific Hardening Function Definition and Characterization of a Multimechanism Generalized Potential-Based Visco Elastoplasticity Model
,”
Int. J. Plast.
0749-6419,
20
, pp.
2111
2142
.
22.
Saleeb
,
A. F.
, and
Arnold
,
S. M.
, 2001, “
A General Time Dependent Constitutive Model: Part I—Theoretical Developments
,”
ASME J. Eng. Mater. Technol.
0094-4289,
123
, pp.
51
64
.
23.
Robinson
,
D. N.
, and
Binienda
,
W. K.
, 2001, “
Model of Viscoplasticity for Transversely Isotropic Inelastically Compressible Solids
,”
J. Eng. Mech.
0733-9399,
127.6
, pp.
567
573
.
24.
Kurath
,
P.
, and
Jones
,
J. W.
, 2001, “
Multiaxial Thermomechanical Deformation Utilizing a Non-Unified Plasticity Model
,” SAE Paper No. 2000-01-0782, Sec. 5, pp.
1
20
.
25.
Sanger
,
C. L.
,
McDonald
,
R. J.
, and
Kurath
,
P.
, 2005, “
Prediction of Welding Residual Stresses and Redistribution/Relaxation Due to Cyclic Loading
,” SAE Paper No. 2005-01-1322, p.
22
.
26.
Dowling
,
N. E.
, 1999,
Mechanical Behavior of Materials
,
Prentice Hall
,
Englewood Cliffs, NJ
.
27.
McDonald
,
R.
, 2004, “
Thermo-Mechanical Behavior of a Ceramic Particulate in a Cast Aluminum Matrix
,” MS thesis, UIUC.
28.
Bange
,
M.
, 2003, “
Stress Relaxation of AA 5182 During Hot Deformation
,” Ph.D. thesis, UIUC.
29.
Fisher
,
J. C.
, 1955, “
Application of Cottrell’s Theory of Yielding to Delayed Yield in Steel
,”
Trans. Am. Soc. Met.
0096-7416,
47
, pp.
451
462
.
30.
Kok
,
S.
, 2002, “
Kinetics of Plastic Flow in Polycrystal Plasticity
,” Ph.D. thesis, UIUC.
31.
Drucker
,
D. C.
, 1951, “
Some Implications of Work Hardening and Ideal Plasticity
,”
Q. Appl. Math.
0033-569X,
7
(
4
), pp.
411
418
.
32.
Armstrong
,
P. J.
, and
Fredrick
,
C. O.
, 1966, “
A Mathematical Representation of the Multiaxial Bauschinger Effect
,” C.E.G.B., Report No. RD/B/N 731.
33.
Chaboche
,
J. L.
, and
Nouailhas
,
D.
, 1989, “
Constitutive Modeling of Ratchetting Effects Part I: Experimental Facts and Properties of the Classical Models; Part II: Possibilities of Some Additional Kinematic Rules
,”
ASME J. Eng. Mater. Technol.
0094-4289,
111
, pp.
384
416
.
34.
Ohno
,
N.
, and
Wang
,
J. D.
, 1993, “
Kinematic Hardening Rules With Critical State of Dynamic Recovery: Part I—Formulation and Basic Features for Ratchetting Behavior
,”
Int. J. Plast.
0749-6419,
9
, pp.
375
390
.
35.
Mughrabi
,
H.
, 1987, “
Johann Bauschinger, Pioneer of Modern Materials Testing
,”
Mater. Forum
0883-2900,
10
(
1
), pp.
5
10
.
36.
Frost
,
H. J.
, and
Ashby
,
M. F.
, 1982,
Deformation Mechanism Maps
,
Oxford
,
New York
.
37.
Sherby
,
O. D.
,
Orr
,
R. L.
, and
Dorn
,
J. E.
, 1954, “
Creep Correlations of Metals at Elevated Temperatures
,”
J. Met.
0148-6608,
200
, pp.
71
79
.
38.
Kauzmann
,
W.
, 1941, “
Flow of Solid Metals From the Standpoint of the Chemical-Rate Theory
,”
Met. Techmol. (N.Y.)
0096-5855,
8.4
, pp.
1
25
.
39.
Dorn
,
J. E.
, 1954, “
Some Fundamental Experiments on High Temperature Creep
,”
J. Mech. Phys. Solids
0022-5096,
3
, pp.
85
116
.
40.
Sherby
,
O. D.
,
Frenkel
,
R.
,
Nadeau
,
J.
, and
Dorn
,
J. E.
, 1954, “
Effect of Stress on the Creep Rates of Polycrystalline Aluminum Alloys Under Constant Structure
,”
J. Met.
0148-6608,
6
, pp.
275
279
.
41.
Laks
,
H.
, 1953, MS thesis, University of California, Berkeley, CA.
42.
Clark
,
C. L.
, and
White
,
A. E.
, 1932, “
Influence of Recrystallization Temperature and Grain Size on the Creep Characteristics of Non-Ferrous Alloys
,”
Proceedings of the American Society for Testing Materials
,
32
, pp.
492
506
.
43.
Kassner
,
M. E.
, 2004, “
Taylor Hardening In Five-Power-Law Creep of Metals and Class M Alloys
,”
Acta Mater.
1359-6454,
52
, pp.
1
9
.
44.
Srivatsan
,
T. S.
,
Al-Hajri
,
M.
,
Petraroli
,
M.
,
Hotton
,
B.
, and
Lam
,
P. C.
, 2002, “
Influence of Silicon Carbide Particulate Reinforcement on Quasi Static and Cyclic Fatigue Fracture Behavior of Aluminum Alloy Composites
,”
Mater. Sci. Eng., A
0921-5093,
325
, pp.
202
214
.
45.
Biermann
,
H.
,
Kemnitzer
,
M.
, and
Hartmann
,
O.
, 2001, “
On the Temperature Dependence of the Fatigue and Damage Behavior of a Peariculate-Reinforced Metal-Matrix Composite
,”
Mater. Sci. Eng., A
0921-5093,
319–321
, pp.
671
674
.
46.
NIST:
National Institute of Science and Technology
, 2004, NIST WebSCD Database, ⟨http://www.ceramics.nist.gov/⟩.
47.
Newman
,
M. L.
, 2002, “
Modeling the Behavior of a Type-319 Aluminum Alloy During Quenching
,” Ph.D. thesis, UIUC.
48.
Jones
,
J. H.
, 1998, “
Multiaxial Thermo-Mechanical Deformation Modeling Utilizing a Non-Unified Deformation Model
,” MS thesis, UIUC.
49.
Varshni
,
Y. P.
, 1970, “
Temperature Dependence of the Elastic Constants
,”
Phys. Rev. B
0556-2805,
2
, pp.
3952
3958
.
50.
Socie
,
D. F.
, and
Marquis
,
G. B.
, 2000,
Multiaxial Fatigue
,
Society of Automotive Engineers
,
Warrendale, PA
.
51.
Jiang
,
Y.
, and
Kurath
,
P.
, 1996, “
Characteristics of the Armstrong-Frederick Type Plasticity Models
,”
Int. J. Plast.
0749-6419,
12
(
3
), pp.
387
415
.
52.
Designation B-557, 2001, “
Standard Test Methods of Tension Testing Wrought and Cast Aluminum- and Magnesium-Alloy Products
,”
Annual Book of Standards
,
02
(
02
), pp.
405
417
.
53.
Kocks
,
U. F.
,
Argon
,
A. S.
, and
Ashby
,
M. F.
, 1975, “
Thermodynamics and Kinetics of Slip
,”
Prog. Mater. Sci.
0079-6425,
19
, pp.
1
289
.
54.
Engler-Pinto
,
C. C.
, Jr.
,
Lasecki
,
J. V.
,
Boileau
,
J. M.
, and
Allison
,
J. E.
, 2004, “
A Comparative Investigation on the High Temperature Fatigue of Three Cast Aluminum Alloys
,”
SAE International 04M-165
.
55.
Saltsman
,
J. F.
, and
Halford
,
G. R.
, 1989, “
Procedures for Characterizing an Alloy and Predicting Cyclic Life With the Total Strain Version of Strainrange Partitioning
,” NASA Technical Memorandum, Report No. 4102.
56.
Krgo
,
A.
,
Kallmeyer
,
A. R.
, and
Kurath
,
P.
, 2002, “
Evaluation of HCF Multiaxial Fatigue Life Prediction Methodologies for Ti-6A1-4V
,”
ASME J. Eng. Mater. Technol.
0094-4289,
124
(
2
), pp.
229
237
.
57.
Smith
,
T. J.
, 1998, “
Thermo-Mechanical Modeling and Microstructural Evolution of a Cast Aluminum Alloy
,” MS thesis, UIUC.
58.
Manson
,
S. S.
, and
Halford
,
G. R.
, 1976, “
Treatment of Multiaxial Creep-Fatigue by Strainrange Partitioning
,”
ASME-MPC Symposium on Creep-Fatigue Interaction
, New York, Dec. 5–10, pp.
299
321
.
59.
Dantzig
,
J. A.
,
Solidification Processing Lab.
, 1312 MEL 105 S. Mathews Avenue, Urbana, IL 61801.
You do not currently have access to this content.