Effect of various atomization methods and solute concentration on the morphology of spray dried magnesium sulphate particles is investigated. Four types of atomizers are characterized and tested including (i) a vibrating mesh nebulizer, (ii) a splash plate nozzle, (iii) an air mist atomizer, and (iv) a pressure atomizer. Several types of particle morphologies are identified in this research. Spray characteristics, such as droplet number density, droplet size, and velocity, and accompanying atomizing air have major influence on the drying and morphology of the particles. High initial solute concentrations result in the formation of thick-walled particles, and this prevents the particles to burst. It is found to be difficult to obtain fully filled magnesium sulphate particles, even for saturated solutions at room temperature because the solution equilibrium saturation changes substantially with temperature.

1.
Lenggoro
,
I. W.
,
Hata
,
T. T.
,
Iskandar
,
F.
,
Lunden
,
M. M.
, and
Okuyama
,
K.
, 2000, “
An Experimental and Modeling Investigation of Particle Production by Spray Pyrolysis Using a Laminar Flow Aerosol Reactor
,”
J. Mater. Res.
0884-2914,
15
(
3
), pp.
733
743
.
2.
Okuyama
,
K.
, and
Lenggoro
,
I. W.
, 2003, “
Preparation of Nanoparticles via Spray Route
,”
Chem. Eng. Sci.
0009-2509,
58
, pp.
537
547
.
3.
Lenggoro
,
I. W.
,
Okuyama
,
K.
, and
Fernandez de la Mora
,
J.
, 2000, “
Preparation of ZnS Nanoparticles by Electrospray Pyrolysis
,”
J. Aerosol Sci.
0021-8502,
31
(
1
), pp.
121
136
.
4.
Janackovic
,
D. J.
,
Jokanovic
,
V.
,
Kostic-Gvozdenovic
,
L. J.
,
Zec
,
S.
, and
Uskokovic
,
D.
, 1997, “
Synthesis and Formation Mechanism of Submicrometer Spherical Cordierite Powders by Ultrasonic Spray Pyrolysis
,”
J. Mater. Sci.
0022-2461,
32
, pp.
163
168
.
5.
Janackovic
,
D. J.
,
Jokanovic
,
V.
,
Kostic-Gvozdenovic
,
L. J.
,
Zivkovic
,
L. J.
, and
Uskokovic
,
D.
, 1996, “
Synthesis, Morphology, and Formation Mechanism of Mullite Particles Produced by Ultrasonic Spray Pyrolysis
,”
J. Mater. Res.
0884-2914,
11
(
7
), pp.
1706
1716
.
6.
Kim
,
S. H.
,
Liu
,
B. Y. H.
, and
Zachariah
,
M. R.
, 2002, “
Synthesis of Nanoporous Metal Oxide Particles by a New Inorganic Matrix Spray Pyrolysis Method
,”
Chem. Mater.
0897-4756,
14
, pp.
2889
2899
.
7.
Lenggoro
,
I. W.
,
Itoh
,
Y.
,
Okuyama
,
K.
, and
Kim
,
T. O.
, 2004, “
Nanoparticles of a Doped Oxide Phosphor Prepared by Direct-Spray Pyrolysis
,”
J. Mater. Res.
0884-2914,
19
(
12
), pp.
3534
3539
.
8.
Jayanthi
,
G. V.
,
Zhang
,
S. C.
, and
Messing
,
G. L.
, 1993, “
Modeling of Solid Particle Formation During Solution Aerosol Thermolysis
,”
Aerosol Sci. Technol.
0278-6826,
19
, pp.
478
490
.
9.
Majumdar
,
D.
,
Glicksman
,
H. D.
, and
Kodas
,
T. T.
, 2000, “
Generation and Sintering Characteristics of Silver-Copper(II) Oxide Composite Powders Made by Spray Pyrolysis
,”
Powder Technol.
0032-5910,
110
, pp.
76
81
.
10.
Mueller
,
R.
,
Jossen
,
R.
,
Pratsinis
,
S. E.
,
Watson
,
M.
, and
Akhtar
,
M. K.
, 2004, “
Zirconia Nanoparticles Made in Spray Flames at High Production Rates
,”
J. Am. Ceram. Soc.
0002-7820,
87
(
2
), pp.
197
202
.
11.
Murugavel
,
P.
,
Kalaiselvam
,
M.
,
Raju
,
A. R.
, and
Rao
,
C. N. R.
, 1997, “
Sub-micrometer Spherical Particles of TiO2, ZrO2, and PZT by Nebulized Spray Pyrolysis of Metal-Organic Precursors
,”
J. Mater. Chem.
0959-9428,
7
(
8
), pp.
1433
1438
.
12.
Miao
,
O.
,
Balachandran
,
W.
, and
Xia
,
P.
, 2001, “
Characterization of ZrO2 and SiC Ceramic Thin Films Prepared by Electrostatic Atomization
,”
J. Mater. Sci.
0022-2461,
36
, pp.
2925
2930
.
13.
Nimmo
,
W.
,
Hind
,
D.
,
Ali
,
N. J.
,
Hampartsoumian
,
S.
, and
Milne
,
S. J.
, 2002, “
The Production of Ultrafine Zirconium Oxide Powders by Spray Pyrolysis
,”
J. Mater. Sci.
0022-2461,
37
, pp.
3381
3387
.
14.
Nimmo
,
W.
,
Ali
,
N. J.
,
Brydson
,
R. M.
,
Calvert
,
C.
,
Hampartsoumian
,
E.
,
Hind
,
D.
, and
Milne
,
S. J.
, 2003, “
Formation of Lead Zirconate Titanate Powders by Spray Pyrolysis
,”
J. Am. Ceram. Soc.
0002-7820,
86
(
9
), pp.
1474
1480
.
15.
Tsai
,
S. C.
,
Song
,
Y. L.
,
Tsai
,
C. S.
,
Yang
,
C. C.
,
Chiu
,
W. Y.
, and
Lin
,
H. H.
, 2004, “
Ultrasonic Spray Pyrolysis for Nanoparticles Synthesis
,”
J. Mater. Sci.
0022-2461,
39
, pp.
3647
3657
.
16.
Tsapis
,
N.
,
Bennet
,
D.
,
Jackson
,
B.
,
Weitz
,
D. A.
, and
Edwards
,
D. A.
, 2002, “
Trojan Particles: Large Porous Carriers of Nanoparticles for Drug Delivery
,”
Appl. Phys. A: Mater. Sci. Process.
0947-8396,
99
(
19
), pp.
12001
12005
.
17.
Xiong
,
Y.
, and
Kodas
,
T. T.
, 1993, “
Droplet Evaporation and Solute Precipitation During Spray Pyrolysis
,”
J. Aerosol Sci.
0021-8502,
24
(
7
), pp.
893
908
.
18.
Tomashpol’skii
,
Yu. Ya.
,
Rybakova
,
L. F.
,
Fedoseeva
,
O. V.
,
Noskova
,
I. A.
, and
Men’shikh
,
S. A.
, 2001, “
94-K Superconducting Yttrium Barium Cuprate Films, Prepared by Spray Pyrolysis of Methacrylate Solutions
,”
Inorg. Mater.
0020-1685,
37
(
1
), pp.
75
80
.
19.
Eslamian
,
M.
,
Ahmed
,
M.
, and
Ashgriz
,
N.
, 2006, “
Modeling of Nanoparticle Formation During Spray Pyrolysis
,”
Nanotechnology
0957-4484,
17
, pp.
1674
1685
.
20.
Eslamian
,
M.
, and
Ashgriz
,
N.
, 2006, “
Modeling of Particle Formation by Spray Pyrolysis Using Droplet Internal Circulation
,”
Int. Commun. Heat Mass Transfer
0735-1933,
33
, pp.
863
871
.
21.
Eslamian
,
M.
, 2006, “
Experimental and Theoretical Investigation of Micro- and Nano- Powder Synthesis by Spray Pyrolysis and Drying
,” Ph.D. thesis, University of Toronto.
22.
Dhand
,
R.
, 2002, “
Nebulizers That Use a Vibrating Mesh or Plate With Multiple Apertures to Generate Aerosol
,”
Respir. Care
0730-8418,
47
, pp.
406
416
.
23.
Sydel
,
P.
,
Sengespeick
,
A.
,
Blomer
,
J.
, and
Bertling
,
J.
, 2004, “
Experimental and Mathematical of Solid Formation at Spray Drying
,”
Chem. Eng. Technol.
0930-7516,
27
(
5
), pp.
505
510
.
You do not currently have access to this content.