The recently growing demand for production and applications of microscale devices and systems has motivated research on the behavior of small volume materials. The computational models have become one of great interests in order to advance the manufacturing of microdevices and to reduce the time to insert new product in applications. Among the various numerical and computational techniques, still the approaches in the context of continuum theories are more preferable due to their minimum computational cost to simulation on realistic time and material structures. This paper reviews the methods to address the thermal and mechanical responses of microsystems. The focus is on the recent developments on the enhanced continuum theories to address the phenomena such as size and boundary effects as well as microscale heat transfer. The thermodynamic consistency of the theories is discussed and microstructural mechanisms are taken into account as physical justification of the framework. The presented constitutive model is calibrated using an extensive set of microscale experimental measurements of thin metal films over a wide range of size and temperature of the samples. An energy based approach is presented to extract the first estimate of the interface model parameters from results of nanoindentation test.

References

1.
Fleck
,
N. A.
,
Muller
,
G. M.
,
Ashby
,
M. F.
, and
Hutchinson
,
J. W.
,
1994
, “
Strain Gradient Plasticity—Theory and Experiment
,”
Acta Metall. Mater.
,
42
(
2
), pp.
475
487
.10.1016/0956-7151(94)90502-9
2.
Espinosa
,
H. D.
,
Prorok
,
B. C.
, and
Peng
,
B.
,
2004
, “
Plasticity Size Effects in Free-Standing Submicron Polycrystalline FCC Films Subjected to Pure Tension
,”
J. Mech. Phys. Solids
,
52
(
3
), pp.
667
689
.10.1016/j.jmps.2003.07.001
3.
Vlassak
,
J. J.
,
Xiang
,
Y.
, and
Chen
,
X.
,
2005
, “
Plane-Strain Bulge Test for Thin Films
,”
J. Mater. Res.
,
20
(
9
), pp.
2360
2370
.10.1557/jmr.2005.0313
4.
Chen
,
X.
,
Ogasawara
,
N.
,
Zhao
,
M. H.
, and
Chiba
,
N.
,
2007
, “
On the Uniqueness of Measuring Elastoplastic Properties From Indentation: The Indistinguishable Mystical Materials
,”
J. Mech. Phys. Solids
,
55
(
8
), pp.
1618
1660
.10.1016/j.jmps.2007.01.010
5.
Ma
,
Q.
, and
Clarke
,
D. R.
,
1995
, “
Size-Dependent Hardness of Silver Single-Crystals
,”
J. Mater. Res.
,
10
(
4
), pp.
853
863
.10.1557/JMR.1995.0853
6.
Chen
,
K.
,
Meng
,
W. J.
,
Mei
,
F. H.
,
Hiller
,
J.
, and
Miller
,
D. J.
,
2011
, “
From Micro- to Nano-Scale Molding of Metals: Size Effect During Molding of Single Crystal Al With Rectangular Strip Punches
,”
Acta Mater.
,
59
(
3
), pp.
1112
1120
.10.1016/j.actamat.2010.10.044
7.
Chen
,
X.
, and
Vlassak
,
J. J.
,
2001
, “
Numerical Study on the Measurement of Thin Film Mechanical Properties by Means of Nanoindentation
,”
J. Mater. Res.
,
16
(
10
), pp.
2974
2982
.10.1557/JMR.2001.0408
8.
Voyiadjis
,
G. Z.
, and
Peters
,
R.
,
2010
, “
Size Effects in Nanoindentation: An Experimental and Analytical Study
,”
Acta Mech.
,
211
(
1–2
), pp.
131
153
.10.1007/s00707-009-0222-z
9.
Voyiadjis
,
G. Z.
,
Faghihi
,
D.
, and
Zhang
,
C.
,
2011
, “
Analytical and Experimental Determination of Rate- and Temperature-Dependent Length Scales Using Nanoindentation Experiments
,”
J. Nanomech. Micromech.
,
1
(
1
), pp.
24
40
.10.1061/(ASCE)NM.2153-5477.0000027
10.
Sze
,
S. M.
, and
Ng
,
K. K.
,
2007
,
Physics of Semiconductor Devices
, 3rd ed.,
Wiley-Interscience
,
Hoboken, NJ
.
11.
Narayan
,
J.
,
Godbole
,
V. P.
, and
White
,
C. W.
,
1991
, “
Laser Method for Synthesis and Processing of Continuous Diamond Films on Nondiamond Substrates
,”
Science
,
252
(
5004
), pp.
416
418
.10.1126/science.252.5004.416
12.
Hall
,
E. O.
,
1951
, “
The Deformation and Ageing of Mild Steel: III Discussion and Results
,”
Proc. Phys. Soc. B
,
64
, pp.
747
753
.10.1088/0370-1301/64/9/303
13.
Petch
,
N. J.
,
1953
, “
The Cleavage Strength of Polycrystals
,”
J. Iron Steel Inst.
,
174
, pp.
25
28
.
14.
Arsenlis
,
A.
, and
Parks
,
D. M.
,
1999
, “
Crystallographic Aspects of Geometrically-Necessary and Statistically-Stored Dislocation Density
,”
Acta Mater.
,
47
(
5
), pp.
1597
1611
.10.1016/S1359-6454(99)00020-8
15.
Bittencourt
,
E.
,
Needleman
,
A.
,
Gurtin
,
M. E.
, and
Van der Giessen
,
E.
,
2003
, “
A Comparison of Nonlocal Continuum and Discrete Dislocation Plasticity Predictions
,”
J. Mech. Phys. Solids
,
51
(
2
), pp.
281
310
.10.1016/S0022-5096(02)00081-9
16.
Nicola
,
L.
,
Van der Giessen
,
E.
, and
Needleman
,
A.
,
2003
, “
Discrete Dislocation Analysis of Size Effects in Thin Films
,”
J. Appl. Phys.
,
93
(
10
), pp.
5920
5928
.10.1063/1.1566471
17.
Aifantis
,
E. C.
,
1999
, “
Gradient Deformation Models at Nano, Micro, and Macro Scales
,”
ASME J. Eng. Mater. Technol.
,
121
(
2
), pp.
189
202
.10.1115/1.2812366
18.
Huang
,
Y.
,
Gao
,
H.
,
Nix
,
W. D.
, and
Hutchinson
,
J. W.
,
2000
, “
Mechanism-Based Strain Gradient Plasticity - II. Analysis
,”
J. Mech. Phys. Solids
,
48
(
1
), pp.
99
128
.10.1016/S0022-5096(99)00022-8
19.
Stolken
,
J. S.
, and
Evans
,
A. G.
,
1998
, “
A Microbend Test Method for Measuring the Plasticity Length Scale
,”
Acta Mater.
,
46
(
14
), pp.
5109
5115
.10.1016/S1359-6454(98)00153-0
20.
Xiang
,
Y.
, and
Vlassak
,
J. J.
,
2005
, “
Bauschinger Effect in Thin Metal Films
,”
Scr. Mater.
,
53
(
2
), pp.
177
182
.10.1016/j.scriptamat.2005.03.048
21.
Xiang
,
Y.
, and
Vlassak
,
J. J.
,
2006
, “
Bauschinger and Size Effects in Thin-Film Plasticity
,”
Acta Mater.
,
54
(
20
), pp.
5449
5460
.10.1016/j.actamat.2006.06.059
22.
Needleman
,
A.
,
Nicola
,
L.
,
Xiang
,
Y.
,
Vlassak
,
J. J.
, and
Van der Giessen
,
E.
,
2006
, “
Plastic Deformation of Freestanding Thin Films: Experiments and Modeling
,”
J. Mech. Phys. Solids
,
54
(
10
), pp.
2089
2110
.10.1016/j.jmps.2006.04.005
23.
Nicola
,
L.
,
Xiang
,
Y.
,
Vlassak
,
J. J.
,
Van der Giessen
,
E.
, and
Needleman
,
A.
,
2006
, “
Plastic Deformation of Freestanding Thin Films: Experiments and Modeling
,”
J. Mech. Phys. Solids
,
54
(
10
), pp.
2089
2110
.10.1016/j.jmps.2006.04.005
24.
Muhlhaus
,
H. B.
, and
Aifantis
,
E. C.
,
1991
, “
A Variational Principle for Gradient Plasticity
,”
Int. J. Solids Struct.
,
28
(
7
), pp.
845
857
.10.1016/0020-7683(91)90004-Y
25.
Zbib
,
H. M.
, and
Aifantis
,
E. C.
,
1992
, “
On the Gradient-Dependent Theory of Plasticity and Shear Banding
,”
Acta Mech.
,
92
(
1–4
), pp.
209
225
.10.1007/BF01174177
26.
Fleck
,
N. A.
, and
Hutchinson
,
J. W.
,
1993
, “
A Phenomenological Theory for Strain Gradient Effects in Plasticity
,”
J. Mech. Phys. Solids
,
41
(
12
), pp.
1825
1857
.10.1016/0022-5096(93)90072-N
27.
Voyiadjis
,
G. Z.
,
Pekmezi
,
G.
, and
Deliktas
,
B.
,
2010
, “
Nonlocal Gradient-Dependent Modeling of Plasticity With Anisotropic Hardening
,”
Int. J. Plast.
,
26
(
9
), pp.
1335
1356
.10.1016/j.ijplas.2010.01.015
28.
Elkhodary
,
K. I.
, and
Zikry
,
M. A.
,
2011
, “
A Fracture Criterion for Finitely Deforming Crystalline Solids—The Dynamic Fracture of Single Crystals
,”
J. Mech. Phys. Solids
,
59
(
10
), pp.
2007
2022
.10.1016/j.jmps.2011.07.004
29.
Labarbera
,
D.
, and
Zikry
,
M. A.
,
2013
, “
Microstructural Behavior of Energetic Crystalline Aggregates
,”
MRS Online Proc. Libr.
,
1526
, p.
mrsf12-1526-tt06-07
.10.1557/opl.2013.503
30.
Gurtin
,
M. E.
,
2002
, “
A Gradient Theory of Single-Crystal Viscoplasticity That Accounts for Geometrically Necessary Dislocations
,”
J. Mech. Phys. Solids
,
50
(
1
), pp.
5
32
.10.1016/S0022-5096(01)00104-1
31.
Gurtin
,
M. E.
,
2004
, “
A Gradient Theory of Small-Deformation Isotropic Plasticity That Accounts for the Burgers Vector and for Dissipation Due to Plastic Spin
,”
J. Mech. Phys. Solids
,
52
(
11
), pp.
2545
2568
.10.1016/j.jmps.2004.04.010
32.
Schiotz
,
J.
,
Tolla
,
F. D. D.
, and
Jacobsen
,
K. W.
,
1998
, “
Softening of Nanocrystalline Metals at Very Small Grains
,”
Nature
,
391
(
6667
), pp.
561
563
.10.1038/35328
33.
Lidorikis
,
E.
,
Bachlechner
,
M. E.
,
Kalia
,
R. K.
,
Nakano
,
A.
,
Vashishta
,
P.
, and
Voyiadjis
,
G. Z.
,
2001
, “
Coupling Length Scales for Multiscale Atomistics-Continuum Simulations: Atomistically Induced Stress Distributions in Si/Si3N4 Nanopixels
,”
Phys. Rev. Lett.
,
8708
(
8
), p.
086104
.10.1103/PhysRevLett.87.086104
34.
Zbib
,
H. M.
,
de la Rubia
,
T. D.
, and
Bulatov
,
V.
,
2002
, “
A Multiscale Model of Plasticity Based on Discrete Dislocation Dynamics
,”
ASME J. Eng. Mater. Technol.
,
124
(
1
), pp.
78
87
.10.1115/1.1421351
35.
Khraishi
,
T. A.
, and
Zbib
,
H. M.
,
2002
, “
Dislocation Dynamics Simulations of the Interaction Between a Short Rigid Fiber and a Glide Circular Dislocation Pile-Up
,”
Comput. Mater. Sci.
,
24
(
3
), pp.
310
322
.10.1016/S0927-0256(01)00253-1
36.
Niordson
,
C. F.
, and
Hutchinson
,
J. W.
,
2003
, “
Non-Uniform Plastic Deformation of Micron Scale Objects
,”
Int. J. Numer. Meth. Eng.
,
56
(
7
), pp.
961
975
.10.1002/nme.593
37.
Aifantis
,
E. C.
,
1984
, “
On the Microstructural Origin of Certain Inelastic Models
,”
ASME J. Eng. Mater. Technol.
,
106
(
4
), pp.
326
330
.10.1115/1.3225725
38.
Acharya
,
A.
, and
Bassani
,
J. L.
,
2000
, “
Lattice Incompatibility and a Gradient Theory of Crystal Plasticity
,”
J. Mech. Phys. Solids
,
48
(
8
), pp.
1565
1595
.10.1016/S0022-5096(99)00075-7
39.
Acharya
,
A.
,
Tang
,
H.
,
Saigal
,
S.
, and
Bassani
,
J. L.
,
2004
, “
On Boundary Conditions and Plastic Strain-Gradient Discontinuity in Lower-Order Gradient Plasticity
,”
J. Mech. Phys. Solids
,
52
(
8
), pp.
1793
1826
.10.1016/j.jmps.2004.02.005
40.
Han
,
C. S.
,
Gao
,
H. J.
,
Huang
,
Y. G.
, and
Nix
,
W. D.
,
2005
, “
Mechanism-Based Strain Gradient Crystal Plasticity—I. Theory
,”
J. Mech. Phys. Solids
,
53
(
5
), pp.
1188
1203
.10.1016/j.jmps.2004.08.008
41.
Han
,
C. S.
,
Gao
,
H. J.
,
Huang
,
Y. G.
, and
Nix
,
W. D.
,
2005
, “
Mechanism-Based Strain Gradient Crystal Plasticity—II. Analysis
,”
J. Mech. Phys. Solids
,
53
(
5
), pp.
1204
1222
.10.1016/j.jmps.2005.01.004
42.
Gurtin
,
M. E.
,
2000
, “
On the Plasticity of Single Crystals: Free Energy, Microforces, Plastic-Strain Gradients
,”
J. Mech. Phys. Solids
,
48
(
5
), pp.
989
1036
.10.1016/S0022-5096(99)00059-9
43.
Voyiadjis
,
G. Z.
, and
Deliktas
,
B.
,
2009
, “
Mechanics of Strain Gradient Plasticity With Particular Reference to Decomposition of the State Variables Into Energetic and Dissipative Components
,”
Int. J. Eng. Sci.
,
47
(
11–12
), pp.
1405
1423
.10.1016/j.ijengsci.2009.05.013
44.
Evans
,
A. G.
, and
Hutchinson
,
J. W.
,
2009
, “
A Critical Assessment of Theories of Strain Gradient Plasticity
,”
Acta Mater.
,
57
(
5
), pp.
1675
1688
.10.1016/j.actamat.2008.12.012
45.
Nix
,
W. D.
, and
Gao
,
H. J.
,
1998
, “
Indentation Size Effects in Crystalline Materials: A Law for Strain Gradient Plasticity
,”
J. Mech. Phys. Solids
,
46
(
3
), pp.
411
425
.10.1016/S0022-5096(97)00086-0
46.
Fleck
,
N. A.
, and
Hutchinson
,
J. W.
,
2001
, “
A Reformulation of Strain Gradient Plasticity
,”
J. Mech. Phys. Solids
,
49
(
10
), pp.
2245
2271
.10.1016/S0022-5096(01)00049-7
47.
Hirth
,
J. P.
,
1972
, “
Influence of Grain-Boundaries on Mechanical Properties
,”
Metall. Trans.
,
3
(
12
), pp.
3047
3067
.10.1007/BF02661312
48.
Polcarova
,
M.
,
Gemperlova
,
J.
,
Bradler
,
J.
,
Jacques
,
A.
,
George
,
A.
, and
Priester
,
L.
,
1998
, “
In-Situ Observation of Plastic Deformation of Fe-Si Bicrystals by White-Beam Synchrotron Radiation Topography
,”
Philos. Mag. A
,
78
(
1
), pp.
105
130
.10.1080/014186198253705
49.
Shen
,
Z.
,
Wagoner
,
R. H.
, and
Clark
,
W. A. T.
,
1988
, “
Dislocation and Grain-Boundary Interactions in Metals
,”
Acta Metall.
,
36
(
12
), pp.
3231
3242
.10.1016/0001-6160(88)90058-2
50.
Clark
,
W. A. T.
,
Wagoner
,
R. H.
,
Shen
,
Z. Y.
,
Lee
,
T. C.
,
Robertson
,
I. M.
, and
Birnbaum
,
H. K.
,
1992
, “
On the Criteria for Slip Transmission Across Interfaces in Polycrystals
,”
Scr. Metall. Mater.
,
26
(
2
), pp.
203
206
.10.1016/0956-716X(92)90173-C
51.
Dehosson
,
J. T. M.
, and
Pestman
,
B. P.
,
1993
, “
Interactions Between Lattice Dislocations and Grain-Boundaries in L12 Ordered Compounds Investigated by In Situ Transmission Electron Microscopy and Computer Modeling Experiments
,”
Mater. Sci. Eng., A
,
164
(
1–2
), pp.
415
420
.10.1016/0921-5093(93)90704-I
52.
Pestman
,
B. J.
, and
Dehosson
,
J. T. M.
,
1992
, “
Interactions Between Lattice Dislocations and Grain-Boundaries in Ni3Al Investigated by Means of In Situ TEM and Computer Modeling Experiments
,”
Acta Metall. Mater.
,
40
(
10
), pp.
2511
2521
.10.1016/0956-7151(92)90321-5
53.
Ziegler
,
H.
, and
Wehrli
,
C.
,
1987
, “
The Derivation of Constitutive Relations From the Free-Energy and the Dissipation Function
,”
Adv. Appl. Mech.
,
25
, pp.
183
238
.10.1016/S0065-2156(08)70278-3
54.
Ziegler
,
H.
,
1963
, “
Some Extremum Principles in Irreversible Thermodynamics With Application to Continuum Mechanics
,”
Progress in Solid Mechanics
, Vol.
4
, I. N. Sneddon and R. Hill, eds.,
North-Holland, Amsterdam, The Netherlands
, pp.
93
193
.
55.
Ziegler
,
H.
,
1958
, “
An Attempt to Generalize Onsager's Principle, and Its Significance for Rheological Problems
,”
Z. Angew. Math. Phys. (ZAMP)
,
9
(
5
), pp.
748
763
.10.1007/BF02424793
56.
Collins
,
I. F.
, and
Houlsby
,
G. T.
,
1997
, “
Application of Thermomechanical Principles to the Modelling of Geotechnical Materials
,”
Proc. R. Soc. London, Ser. A
,
453
(
1964
), pp.
1975
2001
.10.1098/rspa.1997.0107
57.
Fremond
,
M.
, and
Nedjar
,
B.
,
1996
, “
Damage, Gradient of Damage and Principle of Virtual Power
,”
Int. J. Solids Struct.
,
33
(
8
), pp.
1083
1103
.10.1016/0020-7683(95)00074-7
58.
Nedjar
,
B.
,
2001
, “
Elastoplastic-Damage Modelling Including the Gradient of Damage: Formulation and Computational Aspects
,”
Int. J. Solids Struct.
,
38
(
30–31
), pp.
5421
5451
.10.1016/S0020-7683(00)00358-9
59.
Voyiadjis
,
G. Z.
, and
Deliktas
,
B.
,
2000
, “
Multi-Scale Analysis of Multiple Damage Mechanisms Coupled With Inelastic Behavior of Composite Materials
,”
Mech. Res. Commun.
,
27
(
3
), pp.
295
300
.10.1016/S0093-6413(00)00095-1
60.
Voyiadjis
,
G. Z.
,
Taqieddin
,
Z. N.
, and
Kattan
,
P. I.
,
2008
, “
Anisotropic Damage-Plasticity Model for Concrete
,”
Int. J. Plast.
,
24
(
10
), pp.
1946
1965
.10.1016/j.ijplas.2008.04.002
61.
Beheshti
,
A.
, and
Khonsari
,
M.
,
2010
, “
A Thermodynamic Approach for Prediction of Wear Coefficient Under Unlubricated Sliding Condition
,”
Tribol. Lett.
,
38
(
3
), pp.
347
354
.10.1007/s11249-010-9614-4
62.
Lodygowski
,
A.
,
Voyiadjis
,
G. Z.
,
Deliktas
,
B.
, and
Palazotto
,
A.
,
2011
, “
Non-Local and Numerical Formulations for Dry Sliding Friction and Wear at High Velocities
,”
Int. J. Plast.
,
27
(
7
), pp.
1004
1024
.10.1016/j.ijplas.2010.10.008
63.
Aghdam
,
A. B.
,
Beheshti
,
A.
, and
Khonsari
,
M. M.
,
2012
, “
On the Fretting Crack Nucleation With Provision for Size Effect
,”
Tribol. Int.
,
47
, pp.
32
43
.10.1016/j.triboint.2011.10.001
64.
Darabi
,
M. K.
,
Abu
,
Al.-R. R. K.
,
Masad
,
E. A.
, and
Little
,
D. N.
,
2012
, “
A Thermodynamic Framework for Constitutive Modeling of Time- and Rate-Dependent Materials. Part II: Numerical Aspects and Application to Asphalt Concrete
,”
Int. J. Plast.
,
35
, pp.
67
99
.10.1016/j.ijplas.2012.02.003
65.
Darabi
,
M. K.
,
Abu
,
Al.-R. R. K.
,
Masad
,
E. A.
, and
Little
,
D. N.
,
2012
, “
Thermodynamic-Based Model for Coupling Temperature-Dependent Viscoelastic, Viscoplastic, and Viscodamage Constitutive Behavior of Asphalt Mixtures
,”
Int. J. Numer. Anal. Methods Geomech.
,”
36
(
7
), pp.
817
854
.10.1002/nag.1030
66.
Abu
,
Al.-R. R. K.
, and
Darabi
,
M. K.
,
2012
, “
A Thermodynamic Framework for Constitutive Modeling of Time- and Rate-Dependent Materials. Part I: Theory
,”
Int. J. Plast.
,
34
, pp.
61
92
.10.1016/j.ijplas.2012.01.002
67.
Voyiadjis
,
G. Z.
,
Shojaei
,
A.
, and
Li
,
G.
,
2011
, “
A Thermodynamic Consistent Damage and Healing Model for Self Healing Materials
,”
Int. J. Plast.
,
27
(
7
), pp.
1025
1044
.10.1016/j.ijplas.2010.11.002
68.
Voyiadjis
,
G. Z.
,
Shojaei
,
A.
,
Li
,
G. Q.
, and
Kattan
,
P. I.
,
2012
, “
A Theory of Anisotropic Healing and Damage Mechanics of Materials
,”
Proc. R. Soc. A
,
468
(
2137
), pp.
163
183
.10.1098/rspa.2011.0326
69.
Voyiadjis
,
G. Z.
,
Shojaei
,
A.
, and
Li
,
G.
,
2012
, “
A Generalized Coupled Viscoplastic–Viscodamage–Viscohealing Theory for Glassy Polymers
,”
Int. J. Plast.
,
28
(
1
), pp.
21
45
.10.1016/j.ijplas.2011.05.012
70.
Gurtin
,
M. E.
, and
Reddy
,
B. D.
,
2009
, “
Alternative Formulations of Isotropic Hardening for Mises Materials, and Associated Variational Inequalities
,”
Continuum Mech. Thermodyn.
,
21
(
3
), pp.
237
250
.10.1007/s00161-009-0107-3
71.
Shizawa
,
K.
, and
Zbib
,
H. M.
,
1999
, “
A Thermodynamical Theory of Gradient Elastoplasticity With Dislocation Density Tensor. I: Fundamentals
,”
Int. J. Plast.
,
15
(
9
), pp.
899
938
.10.1016/S0749-6419(99)00018-2
72.
Reddy
,
B. D.
,
2012
, “
The Role of Dissipation and Defect Energy in Variational Formulations of Problems in Strain-Gradient Plasticity. Part 1: Polycrystalline Plasticity
,”
Continuum Mech. Thermodyn.
,
23
(
6
), pp.
527
549
.10.1007/s00161-011-0194-9
73.
Reddy
,
B. D.
,
2011
, “
The Role of Dissipation and Defect Energy in Variational Formulations of Problems in Strain-Gradient Plasticity. Part 2: Single-Crystal Plasticity
,”
Continuum Mech. Thermodyn.
,
23
(
6
), pp.
551
572
.10.1007/s00161-011-0195-8
74.
Fleck
,
N. A.
, and
Willis
,
J. R.
,
2009
, “
A Mathematical Basis for Strain-Gradient Plasticity Theory—Part I: Scalar Plastic Multiplier
,”
J. Mech. Phys. Solids
,”
57
(
1
), pp.
161
177
.10.1016/j.jmps.2008.09.010
75.
Fredriksson
,
P.
, and
Gudmundson
,
P.
,
2007
, “
Modelling of the Interface Between a Thin Film and a Substrate Within a Strain Gradient Plasticity Framework
,”
J. Mech. Phys. Solids
,
55
(
5
), pp.
939
955
.10.1016/j.jmps.2006.11.001
76.
Gurtin
,
M. E.
,
2010
, “
A Finite-Deformation, Gradient Theory of Single-Crystal Plasticity With Free Energy Dependent on the Accumulation of Geometrically Necessary Dislocations
,”
Int. J. Plast.
,
26
(
8
), pp.
1073
1096
.10.1016/j.ijplas.2010.02.002
77.
Gurtin
,
M. E.
,
2003
, “
On a Framework for Small-Deformation Viscoplasticity: Free Energy, Microforces, Strain Gradients
,”
Int. J. Plast.
,
19
(
1
), pp.
47
90
.10.1016/S0749-6419(01)00018-3
78.
Gurtin
,
M. E.
,
2008
, “
A Finite-Deformation, Gradient Theory of Single-Crystal Plasticity With Free Energy Dependent on Densities of Geometrically Necessary Dislocations
,”
Int. J. Plast.
,
24
(
4
), pp.
702
725
.10.1016/j.ijplas.2007.07.014
79.
Gurtin
,
M. E.
,
2006
, “
The Burgers Vector and the Flow of Screw and Edge Dislocations in Finite-Deformation Single-Crystal Plasticity
,”
J. Mech. Phys. Solids
,
54
(
9
), pp.
1882
1898
.10.1016/j.jmps.2006.03.003
80.
Gurtin
,
M. E.
, and
Anand
,
L.
,
2005
, “
A Theory of Strain-Gradient Plasticity for Isotropic, Plastically Irrotational Materials. Part I: Small Deformations
,”
J. Mech. Phys. Solids
,
53
(
7
), pp.
1624
1649
.10.1016/j.jmps.2004.12.008
81.
Gurtin
,
M. E.
, and
Anand
,
L.
,
2005
, “
A Theory of Strain-Gradient Plasticity for Isotropic, Plastically Irrotational Materials. Part II: Finite Deformations
,”
Int. J. Plast.
,
21
(
12
), pp.
2297
2318
.10.1016/j.ijplas.2005.01.006
82.
Gurtin
,
M. E.
, and
Anand
,
L.
,
2007
, “
A Gradient Theory for Single-Crystal Plasticity
,”
Modell. Simul. Mater. Sci. Eng.
,
15
(
1
), pp.
S263
S270
.10.1088/0965-0393/15/1/S20
83.
Gurtin
,
M. E.
,
Anand
,
L.
, and
Lele
,
S. P.
,
2007
, “
Gradient Single-Crystal Plasticity With Free Energy Dependent on Dislocation Densities
,”
J. Mech. Phys. Solids
,
55
(
9
), pp.
1853
1878
.10.1016/j.jmps.2007.02.006
84.
Gurtin
,
M. E.
, and
Anand
,
L.
,
2009
, “
Thermodynamics Applied to Gradient Theories Involving the Accumulated Plastic Strain: The Theories of Aifantis and Fleck and Hutchinson and Their Generalization
,”
J. Mech. Phys. Solids
,
57
(
3
), pp.
405
421
.10.1016/j.jmps.2008.12.002
85.
Gurtin
,
M. E.
, and
Ohno
,
N.
,
2011
, “
A Gradient Theory of Small-Deformation, Single-Crystal Plasticity That Accounts for GND-Induced Interactions Between Slip Systems
,”
J. Mech. Phys. Solids
,
59
(
2
), pp.
320
343
.10.1016/j.jmps.2010.10.005
86.
Ohno
,
N.
, and
Okumura
,
D.
,
2007
, “
Higher-Order Stress and Grain Size Effects Due to Self-Energy of Geometrically Necessary Dislocations
,”
J. Mech. Phys. Solids
,
55
(
9
), pp.
1879
1898
.10.1016/j.jmps.2007.02.007
87.
Ohno
,
N.
,
Okumura
,
D.
, and
Shibata
,
T.
,
2008
, “
Grain-Size Dependent Yield Behavior Under Loading, Unloading and Reverse Loading
,”
Int. J. Mod. Phys. B
,
22
(
31–32
), pp.
5937
5942
.10.1142/S0217979208051406
88.
Fleck
,
N. A.
, and
Willis
,
J. R.
,
2009
, “
A Mathematical Basis for Strain-Gradient Plasticity Theory. Part II: Tensorial Plastic Multiplier
,”
J. Mech. Phys. Solids
,
57
(
7
), pp.
1045
1057
.10.1016/j.jmps.2009.03.007
89.
Gudmundson
,
P.
,
2004
, “
A Unified Treatment of Strain Gradient Plasticity
,”
J. Mech. Phys. Solids
,
52
(
6
), pp.
1379
1406
.10.1016/j.jmps.2003.11.002
90.
Hutchinson
,
J. W.
,
2012
, “
Generalizing J2 Flow Theory: Fundamental Issues in Strain Gradient Plasticity
,”
Acta Mech. Sin.
,
28
(
4
), pp.
1078
1086
.10.1007/s10409-012-0089-4
91.
Qiu
,
T. Q.
, and
Tien
,
C. L.
,
1992
, “
Short-Pulse Laser-Heating on Metals
,”
Int. J. Heat Mass Transfer
,
35
(
3
), pp.
719
726
.10.1016/0017-9310(92)90131-B
92.
Evers
,
L. P.
,
Brekelmans
,
W. A. M.
, and
Geers
,
M. G. D.
,
2004
, “
Non-Local Crystal Plasticity Model With Intrinsic SSD and GND Effects
,”
J. Mech. Phys. Solids
,
52
(
10
), pp.
2379
2401
.10.1016/j.jmps.2004.03.007
93.
deBorst
,
R.
, and
Pamin
,
J.
,
1996
, “
Some Novel Developments in Finite Element Procedures for Gradient-Dependent Plasticity
,”
Int. J. Numer. Methods Eng.
,
39
(
14
), pp.
2477
2505
.10.1002/(SICI)1097-0207(19960730)39:14<2477::AID-NME962>3.0.CO;2-E
94.
Papanastasiou
,
P. C.
, and
Vardoulakis
,
I. G.
,
1992
, “
Numerical Treatment of Progressive Localization in Relation to Borehole Stability
,”
Int. J. Numer. Anal. Methods Geomech.
,
16
(
6
), pp.
389
424
.10.1002/nag.1610160602
95.
Abu Al-Rub
,
R. K.
,
Voyiadjis
,
G. Z.
, and
Bammann
,
D. J.
,
2007
, “
A Thermodynamic Based Higher-Order Gradient Theory for Size Dependent Plasticity
,”
Int. J. Solids Struct.
,
44
(
9
), pp.
2888
2923
.10.1016/j.ijsolstr.2006.08.034
96.
Voyiadjis
,
G. Z.
, and
Deliktas
,
B.
,
2009
, “
Formulation of Strain Gradient Plasticity With Interface Energy in a Consistent Thermodynamic Framework
,”
Int. J. Plast.
,
25
(
10
), pp.
1997
2024
.10.1016/j.ijplas.2008.12.014
97.
Polizzotto
,
C.
,
2009
, “
A Link Between the Residual-Based Gradient Plasticity Theory and the Analogous Theories Based on the Virtual Work Principle
,”
Int. J. Plast.
,
25
(
11
), pp.
2169
2180
.10.1016/j.ijplas.2009.02.006
98.
Polizzotto
,
C.
,
2009
, “
A Nonlocal Strain Gradient Plasticity Theory for Finite Deformations
,”
Int. J. Plast.
,
25
(
7
), pp.
1280
1300
.10.1016/j.ijplas.2008.09.009
99.
Polizzotto
,
C.
,
2010
, “
Shakedown Analysis for a Class of Strengthening Materials Within the Framework of Gradient Plasticity
,”
Int. J. Plast.
,
26
(
7
), pp.
1050
1069
.10.1016/j.ijplas.2010.01.006
100.
Polizzotto
,
C.
,
2011
, “
A Unified Residual-Based Thermodynamic Framework for Strain Gradient Theories of Plasticity
,”
Int. J. Plast.
,
27
(
3
), pp.
388
413
.10.1016/j.ijplas.2010.07.001
101.
Mikkelsen
,
L. P.
,
1997
, “
Post-Necking Behaviour Modelled by a Gradient Dependent Plasticity Theory
,”
Int. J. Solids Struct.
,
34
(
35–36
), pp.
4531
4546
.10.1016/S0020-7683(97)00039-5
102.
Aravas
,
N.
,
Kim
,
K. S.
, and
Leckie
,
F. A.
,
1990
, “
On the Calculations of the Stored Energy of Cold Work
,”
ASME J. Eng. Mater. Technol.
,
112
(
4
), pp.
465
470
.10.1115/1.2903358
103.
Voyiadjis
,
G. Z.
,
Abu Al-Rub
,
R. K.
, and
Palazotto
,
A. N.
,
2006
, “
On the Small and Finite Deformation Thermo-Elasto-Viscoplasticity Theory for Strain Localization Problems: Algorithmic and Computational Aspects
,”
Eur. J. Comput. Mech.
,
15
(
7–8
), pp.
945
987
.10.3166/remn.15.945-987
104.
Voyiadjis
,
G. Z.
,
Abu Al-Rub
,
R. K.
, and
Palazotto
,
A. N.
,
2004
, “
Thermodynamic Framework for Coupling of Non-Local Viscoplasticity and Non-Local Anisotropic Viscodamage for Dynamic Localization Problems Using Gradient Theory
,”
Int. J. Plast.
,
20
(
6
), pp.
981
1038
.10.1016/j.ijplas.2003.10.002
105.
Abu Al-Rub
,
R. K.
,
Darabi
,
M. K.
, and
Masad
,
E. A.
,
2010
, “
A Straightforward Numerical Technique for Finite Element Implementation of Nonlocal Gradient-Dependent Continuum Damage Mechanics Theories
,”
Int. J. Theor. Appl. Multiscale Mech.
,
1
(
4
), pp.
352
385
.10.1504/IJTAMM.2010.038281
106.
Fredriksson
,
P.
, and
Gudmundson
,
P.
,
2005
, “
Size-Dependent Yield Strength of Thin Films
,”
Int. J. Plast.
,
21
(
9
), pp.
1834
1854
.10.1016/j.ijplas.2004.09.005
107.
Fredriksson
,
P.
, and
Gudmundson
,
P.
,
2007
, “
Competition Between Interface and Bulk Dominated Plastic Deformation in Strain Gradient Plasticity
,”
Modell. Simul. Mater. Sci. Eng.
,
15
(
1
), pp.
S61
S69
.10.1088/0965-0393/15/1/S06
108.
Fredriksson
,
P.
,
Gudmundson
,
P.
, and
Mikkelsen
,
L. P.
,
2009
, “
Finite Element Implementation and Numerical Issues of Strain Gradient Plasticity With Application to Metal Matrix Composites
,”
Int. J. Solids Struct.
,
46
(
22–23
), pp.
3977
3987
.10.1016/j.ijsolstr.2009.07.028
109.
Fredriksson
,
P.
, and
Larsson
,
P. L.
,
2008
, “
Wedge Indentation of Thin Films Modelled by Strain Gradient Plasticity
,”
Int. J. Solids Struct.
,
45
(
21
), pp.
5556
5566
.10.1016/j.ijsolstr.2008.06.001
110.
Niordson
,
C. F.
, and
Redanz
,
P.
,
2004
, “
Size-Effects in Plane Strain Sheet-Necking
,”
J. Mech. Phys. Solids
,
52
(
11
), pp.
2431
2454
.10.1016/j.jmps.2004.05.009
111.
Niordson
,
C. F.
, and
Tvergaard
,
V.
,
2005
, “
Instabilities in Power Law Gradient Hardening Materials
,”
Int. J. Solids Struct.
,
42
(
9–10
), pp.
2559
2573
.10.1016/j.ijsolstr.2004.09.051
112.
Niordson
,
C. F.
,
2008
, “
On Higher-Order Boundary Conditions at Elastic-Plastic Boundaries in Strain-Gradient Plasticity
,”
Philos. Mag.
,
88
(
30–32
), pp.
3731
3745
.10.1080/14786430802154823
113.
Legarth
,
B. N.
, and
Niordson
,
C. F.
,
2010
, “
Debonding Failure and Size Effects in Micro-Reinforced Composites
,”
Int. J. Plast.
,
26
(
1
), pp.
149
165
.10.1016/j.ijplas.2009.07.001
114.
Azizi
,
R.
,
Niordson
,
C. F.
, and
Legarth
,
B. N.
,
2011
, “
Size-Effects on Yield Surfaces for Micro Reinforced Composites
,”
Int. J. Plast.
,
27
(
11
), pp.
1817
1832
.10.1016/j.ijplas.2011.05.006
115.
Anand
,
L.
,
Gurtin
,
M. E.
,
Lele
,
S. P.
, and
Gething
,
C.
,
2005
, “
A One-Dimensional Theory of Strain-Gradient Plasticity: Formulation, Analysis, Numerical Results
,”
J. Mech. Phys. Solids
,
53
(
8
), pp.
1789
1826
.10.1016/j.jmps.2005.03.003
116.
Lele
,
S. P.
, and
Anand
,
L.
,
2009
, “
A Large-Deformation Strain-Gradient Theory for Isotropic Viscoplastic Materials
,”
Int. J. Plast.
,
25
(
3
), pp.
420
453
.10.1016/j.ijplas.2008.04.003
117.
Lele
,
S. P.
, and
Anand
,
L.
,
2008
, “
A Small-Deformation Strain-Gradient Theory for Isotropic Viscoplastic Materials
,”
Philos. Mag.
,
88
(
30–32
), pp.
3655
3689
.10.1080/14786430802087031
118.
Anand
,
L.
,
Aslan
,
O.
, and
Chester
,
S. A.
,
2012
, “
A Large-Deformation Gradient Theory for Elastic–Plastic Materials: Strain Softening and Regularization of Shear Bands
,”
Int. J. Plast.
,
30–31
, pp.
116
143
.10.1016/j.ijplas.2011.10.002
119.
Groeneveld
,
R. H. M.
,
Sprik
,
R.
, and
Lagendijk
,
A.
,
1990
, “
Ultrafast Relaxation of Electrons Probed by Surface-Plasmons at a Thin Silver Film
,”
Phys. Rev. Lett.
,
64
(
7
), pp.
784
787
.10.1103/PhysRevLett.64.784
120.
Elsayed-Ali
,
H. E.
,
Juhasz
,
T.
,
Smith
,
G. O.
, and
Bron
,
W. E.
,
1991
, “
Femtosecond Thermoreflectivity and Thermotransmissivity of Polycrystalline and Single-Crystalline Gold-Films
,”
Phys. Rev. B
,
43
(
5
), pp.
4488
4491
.10.1103/PhysRevB.43.4488
121.
Kaganov
,
M. I.
,
Lifshitz
,
I. M.
, and
Tanatarov
,
L. V.
,
1956
, “
Relaxation Between Electrons and the Crystalline Lattice
,”
J Exp. Theoretical Physics (Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki)
,
31
, pp.
232
237
.
122.
Voyiadjis
,
G. Z.
,
Faghihi
,
D.
, and
Zhang
,
Y.
,
2014
, “
A Theory for Grain Boundaries With Strain-Gradient Plasticity
,”
Int. J. Solids Struct.
,
51
(
10
), pp.
1872
1889
.10.1016/j.ijsolstr.2014.01.020
123.
Gan
,
M.
, and
Tomar
,
V.
,
2010
, “
Role of Length Scale and Temperature in Indentation Induced Creep Behavior of Polymer Derived Si–C–O Ceramics
,”
Mater. Sci. Eng., A
,
527
(
29–30
), pp.
7615
7623
.10.1016/j.msea.2010.08.016
124.
Torii
,
S.
, and
Yang
,
W. J.
,
2005
, “
Heat Transfer Mechanisms in Thin Film With Laser Heat Source
,”
Int. J. Heat Mass Transfer
,
48
(
3–4
), pp.
537
544
.10.1016/j.ijheatmasstransfer.2004.09.011
125.
Voyiadjis
,
G. Z.
, and
Faghihi
,
D.
,
2010
, “
Variable (Intrinsic) Material Length Scale for Face-Centred Cubic Metals Using Nano-Indentation
,”
Proc. Inst. Mech. Eng.
,
224
(
3
), pp.
123
147
.10.1243/13506501JET655
126.
Faghihi
,
D.
,
Voyiadjis
,
G. Z.
, and
Park
,
T.
,
2013
, “
Coupled Thermomechanical Modeling of Small Volume FCC Metals
,”
ASME J. Eng. Mater. Technol.
,
135
(
2
), p.
021003
.10.1115/1.4023771
127.
Faghihi
,
D.
,
2012
, “Continuum and Crystal Strain Gradient Plasticity With Energetic and Dissipative Length Scales,” Doctoral dissertation, Louisiana State University, Baton Rouge, LA.
128.
NSF Blue Ribbon Panel on Simulation-Based Engineering Science
,
2006
, “Simulation-Based Engineering Science: Revolutionizing Engineering Science Through Simulation,” National Science Foundation, Arlington, VA, available at: http://www.nsf.gov/pubs/reports/sbes_final_report.pdf
129.
Owolabi
,
G. M.
,
Odeshi
,
A. G.
,
Singh
,
M. N. K.
, and
Bassim
,
M. N.
,
2007
, “
Dynamic Shear Band Formation in Aluminum 6061-T6 and Aluminum 6061-T6/Al2O3 Composites
,”
Mater. Sci. Eng., A
,
457
(
1–2
), pp.
114
119
.10.1016/j.msea.2006.12.034
130.
Odeshi
,
A. G.
,
Bassim
,
M. N.
,
Al-Ameeri
,
S.
, and
Li
,
Q.
,
2005
, “
Dynamic Shear Band Propagation and Failure in AISI 4340 Steel
,”
J. Mater. Process. Technol.
,
169
(
2
), pp.
150
155
.10.1016/j.jmatprotec.2005.03.016
131.
Mason
,
J. J.
,
Rosakis
,
A. J.
, and
Ravichandran
,
G.
,
1994
, “
Full-Field Measurements of the Dynamic Deformation Field Around a Growing Adiabatic Shear-Band at the Tip of a Dynamically Loaded Crack or Notch
,”
J. Mech. Phys. Solids
,
42
(
11
), pp.
1679
1697
.10.1016/0022-5096(94)90067-1
132.
Mason
,
C.
, and
Worswick
,
M. J.
,
2001
, “
Adiabatic Shear in Annealed and Shock-Hardened Iron and in Quenched and Tempered 4340 Steel
,”
Int. J. Fract.
,
111
(
1
), pp.
29
51
.10.1023/A:1010903415661
133.
Kalkman
,
A. J.
,
Verbruggen
,
A. H.
, and
Janssen
,
G. C. A. M.
,
2003
, “
High-Temperature Bulge-Test Setup for Mechanical Testing of Free-Standing Thin Films
,”
Rev. Sci. Instrum.
,
74
(
3
), pp.
1383
1385
.10.1063/1.1539901
134.
Chen
,
D.
,
Sixta
,
M. E.
,
Zhang
,
X. F.
,
De Jonghe
,
L. C.
, and
Ritchie
,
R. O.
,
2000
, “
Role of the Grain-Boundary Phase on the Elevated-Temperature Strength, Toughness, Fatigue and Creep Resistance of Silicon Carbide Sintered With Al, B and C
,”
Acta Mater.
,
48
(
18–19
), pp.
4599
4608
.10.1016/S1359-6454(00)00246-9
135.
Hansen
,
N. R.
, and
Schreyer
,
H. L.
,
1994
, “
A Thermodynamically Consistent Framework for Theories of Elastoplasticity Coupled With Damage
,”
Int. J. Solids Struct.
,
31
(
3
), pp.
359
389
.10.1016/0020-7683(94)90112-0
136.
Lemaitre
,
J.
,
1985
, “
Coupled Elasto-Plasticity and Damage Constitutive-Equations
,”
Comput. Meth. Appl. Mech. Eng.
,
51
(
1–3
), pp.
31
49
.10.1016/0045-7825(85)90026-X
137.
Nemat-Nasser
,
S.
, and
Guo
,
W. G.
,
2000
, “
Flow Stress of Commercially Pure Niobium Over a Broad Range of Temperatures and Strain Rates
,”
Mater. Sci. Eng., A
,
284
(
1–2
), pp.
202
210
.10.1016/S0921-5093(00)00740-1
138.
Voyiadjis
,
G. Z.
, and
Abed
,
F. H.
,
2005
, “
Microstructural Based Models for bcc and fcc Metals With Temperature and Strain Rate Dependency
,”
Mech. Mater.,
37
(
2–3
), pp.
355
378
.10.1016/j.mechmat.2004.02.003
139.
Naderi
,
M.
,
Amiri
,
M.
, and
Khonsari
,
M. M.
,
2009
, “
On the Thermodynamic Entropy of Fatigue Fracture
,”
Proc. R. Soc. London, Ser. A
,
466
(
2114
), pp.
423
438
.10.1098/rspa.2009.0348
140.
Taylor
,
G. I.
, and
Quinney
,
H.
,
1934
, “
The Latent Energy Remaining in a Metal After Cold Working
,”
Proc. R. Soc. London, Ser. A
,
143
(
849
), pp.
307
326
.10.1098/rspa.1934.0004
141.
Hodowany
,
J.
,
Ravichandran
,
G.
,
Rosakis
,
A. J.
, and
Rosakis
,
P.
,
2000
, “
Partition of Plastic Work Into Heat and Stored Energy in Metals
,”
Exp. Mech.
,
40
(
2
), pp.
113
123
.10.1007/BF02325036
142.
Mason
,
J. J.
,
Rosakis
,
A. J.
, and
Ravichandran
,
G.
,
1994
, “
On the Strain and Strain Rate Dependence of the Fraction of Plastic Work Converted to Heat: An Experimental Study Using High Speed Infrared Detectors and the Kolsky Bar
,”
Mech. Mater.
17
(
2–3
), pp.
135
145
.10.1016/0167-6636(94)90054-X
143.
Zehnder
,
A. T.
,
Babinsky
,
E.
, and
Palmer
,
T.
,
1998
, “
Hybrid Method for Determining the Fraction of Plastic Work Converted to Heat
,”
Exp. Mech.
,
38
(
4
), pp.
295
302
.10.1007/BF02410392
144.
Jovic
,
C.
,
Wagner
,
D.
,
Herve
,
P.
,
Gary
,
G.
, and
Lazzarotto
,
L.
,
2006
, “
Mechanical Behaviour and Temperature Measurement During Dynamic Deformation on Split Hopkinson Bar of 304L Stainless Steel and 5754 Aluminium Alloy
,”
J. Phys. IV
,
134
, pp.
1279
1285
.10.1051/jp4:2006134194
145.
Oliferuk
,
W.
, and
Maj
,
M.
,
2009
, “
Stress-Strain Curve and Stored Energy During Uniaxial Deformation of Polycrystals
,”
Eur. J. Mech. A. Solids
,
28
(
2
), pp.
266
272
.10.1016/j.euromechsol.2008.06.003
146.
Rosakis
,
P.
,
Rosakis
,
A. J.
,
Ravichandran
,
G.
, and
Hodowany
,
J.
,
2000
, “
A Thermodynamic Internal Variable Model for the Partition of Plastic Work Into Heat and Stored Energy in Metals
,”
J. Mech. Phys. Solids
,
48
(
3
), pp.
581
607
.10.1016/S0022-5096(99)00048-4
147.
Rusinek
,
A.
, and
Klepaczko
,
J. R.
,
2009
, “
Experiments on Heat Generated During Plastic Deformation and Stored Energy for TRIP Steels
,”
Mater. Des.
,
30
(
1
), pp.
35
48
.10.1016/j.matdes.2008.04.048
148.
Stainier
,
L.
, and
Ortiz
,
M.
,
2010
, “
Study and Validation of a Variational Theory of Thermo-Mechanical Coupling in Finite Visco-Plasticity
,”
Int. J. Solids Struct.
,
47
(
5
), pp.
705
715
.10.1016/j.ijsolstr.2009.11.012
149.
Miller
,
R. E.
, and
Tadmor
,
E. B.
,
2002
, “
The Quasicontinuum Method: Overview, Applications and Current Directions
,”
J. Comput.-Aided Mater. Des.
,
9
(
3
), pp.
203
239
.10.1023/A:1026098010127
150.
Ristinmaa
,
M.
,
Wallin
,
M.
, and
Ottosen
,
N. S.
,
2007
, “
Thermodynamic Format and Heat Generation of Isotropic Hardening Plasticity
,”
Acta Mech.
,
194
(
1–4
), pp.
103
121
.10.1007/s00707-007-0448-6
151.
Zehnder
,
A. T.
,
1991
, “
A Model for the Heating Due to Plastic Work
,”
Mech. Res. Commun.
,
18
(
1
), pp.
23
28
.10.1016/0093-6413(91)90023-P
152.
Longère
,
P.
, and
Dragon
,
A.
,
2008
, “
Evaluation of the Inelastic Heat Fraction in the Context of Microstructure-Supported Dynamic Plasticity Modelling
,”
Int. J. Impact Eng.
,
35
(
9
), pp.
992
999
.10.1016/j.ijimpeng.2007.06.006
153.
Benzerga
,
A. A.
,
Brechet
,
Y.
,
Needleman
,
A.
, and
Van der Giessen
,
E.
,
2005
, “
The Stored Energy of Cold Work: Predictions From Discrete Dislocation Plasticity
,”
Acta Mater.
53
(
18
), pp.
4765
4779
.10.1016/j.actamat.2005.07.011
154.
Mollica
,
F.
,
Rajagopal
,
K. R.
, and
Srinivasa
,
A. R.
,
2001
, “
The Inelastic Behavior of Metals Subject to Loading Reversal
,”
Int. J. Plast.
17
(
8
), pp.
1119
1146
.10.1016/S0749-6419(00)00082-6
155.
Faghihi
,
D.
, and
Voyiadjis
,
G. Z.
,
2012
, “
Thermal and Mechanical Responses of BCC Metals to the Fast-Transient Process in Small Volumes
,”
J. Nanomech. Micromech.
2
(
3
), pp.
29
41
.10.1061/(ASCE)NM.2153-5477.0000048
156.
Faghihi
,
D.
, and
Voyiadjis
,
G. Z.
,
2013
, “
A Thermodynamic Consistent Model for Coupled Strain-Gradient Plasticity With Temperature
,”
ASME J. Eng. Mater. Technol.
,
136
(
1
), p.
011002
.10.1115/1.4025508
157.
Voyiadjis
,
G. Z.
, and
Faghihi
,
D.
,
2012
, “
Microstructure to Macro-Scale Using Gradient Plasticity With Temperature and Rate Dependent Length Scale
,”
Procedia IUTAM
,
3
, pp.
205
227
.10.1016/j.piutam.2012.03.014
158.
Voyiadjis
,
G. Z.
, and
Faghihi
,
D.
,
2012
, “
Thermo-Mechanical Strain Gradient Plasticity With Energetic and Dissipative Length Scales
,”
Int. J. Plast.
,
30–31
, pp.
218
247
.10.1016/j.ijplas.2011.10.007
159.
Voyiadjis
,
G. Z.
, and
Faghihi
,
D.
,
2012
, “
Gradient Plasticity for Thermo-Mechanical Processes in Metals With Length and Time Scales
,”
Philos. Mag.
,
93
(
9
), pp.
1013
1053
.10.1080/14786435.2012.740576
160.
Bardella
,
L.
,
2010
, “
Size Effects in Phenomenological Strain Gradient Plasticity Constitutively Involving the Plastic Spin
,”
Int. J. Eng. Sci.
,
48
(
5
), pp.
550
568
.10.1016/j.ijengsci.2010.01.003
161.
Nye
,
J. F.
,
1953
, “
Some Geometrical Relations in Dislocated Crystals
,”
Acta Metall.
,
1
(
2
), pp.
153
162
.10.1016/0001-6160(53)90054-6
162.
Fleck
,
N. A.
, and
Hutchinson
,
J. W.
,
1997
, “
Strain Gradient Plasticity
,”
Adv. Appl. Mech.
,
33
, pp.
295
361
.10.1016/S0065-2156(08)70388-0
163.
Bassani
,
J. L.
,
2001
, “
Incompatibility and a Simple Gradient Theory of Plasticity
,”
J. Mech. Phys. Solids
,
49
(
9
), pp.
1983
1996
.10.1016/S0022-5096(01)00037-0
164.
Forest
,
S.
, and
Amestoy
,
M.
,
2008
, “
Hypertemperature in Thermoelastic Solids
,”
Comptes Rendus Mécanique.
,
336
(
4
), pp.
347
353
.10.1016/j.crme.2008.01.007
165.
Gurtin
,
M. E.
,
1996
, “
Generalized Ginzburg–Landau and Cahn–Hilliard Equations Based on a Microforce Balance
,”
Physica D
,
92
(
3–4
), pp.
178
192
.10.1016/0167-2789(95)00173-5
166.
Voyiadjis
,
G. Z.
, and
Faghihi
,
D.
,
2012
, “
The Effect of Temperature on Interfacial Gradient Plasticity in Metallic Thin Films
,”
Advanced Materials Modelling for Structures
, Vol.
19
,
Springer-Verlag
,
Berlin
, pp.
337
349
.10.1007/978-3-642-35167-9_31
167.
Xiang
,
Y.
,
Chen
,
X.
, and
Vlassak
,
J. J.
,
2005
, “
Plane-Strain Bulge Test for Thin Films
,”
J. Mater. Res.
,
20
(
9
), pp.
2360
2370
.10.1557/jmr.2005.0313
168.
Rusinek
,
A.
,
Zaera
,
R.
, and
Klepaczko
,
J. R.
,
2007
, “
Constitutive Relations in 3-D for a Wide Range of Strain Rates and Temperatures—Application to Mild Steels
,”
Int. J. Solids Struct.
,
44
(
17
), pp.
5611
5634
.10.1016/j.ijsolstr.2007.01.015
169.
Farren
,
W. S.
, and
Taylor
,
G. I.
,
1925
, “
The Heat Developed During Plastic Extension of Metals
,”
Proc. R. Soc. London Ser. A
,
107
(
743
), pp.
422
451
.10.1098/rspa.1925.0034
170.
Taylor
,
G. I.
, and
Quinney
,
H.
,
1932
, “
The Plastic Distortion of Metals
,”
Philos. Trans. R. Soc. London Ser. A
,
230
, pp.
323
362
.10.1098/rsta.1932.0009
171.
Oliferuk
,
W.
,
Swiatnicki
,
W. A.
, and
Grabski
,
M. W.
,
1993
, “
Rate of Energy-Storage and Microstructure Evolution During the Tensile Deformation of Austenitic Steel
,”
Mater. Sci. Eng. A
,
161
(
1
), pp.
55
63
.10.1016/0921-5093(93)90475-T
172.
Oliferuk
,
W.
,
Swiatnicki
,
W. A.
, and
Grabski
,
M. W.
,
1995
, “
Effect of the Grain-Size on the Rate of Energy-Storage During the Tensile Deformation of an Austenitic Steel
,”
Mater. Sci. Eng. A
,
197
(
1
), pp.
49
58
.10.1016/0921-5093(94)09766-6
173.
Groma
,
I.
,
Csikor
,
F. F.
, and
Zaiser
,
M.
,
2003
, “
Spatial Correlations and Higher-Order Gradient Terms in a Continuum Description of Dislocation Dynamics
,”
Acta Mater.
,
51
(
5
), pp.
1271
1281
.10.1016/S1359-6454(02)00517-7
174.
Garroni
,
A.
,
Leoni
,
G.
, and
Ponsiglione
,
M.
,
2010
, “
Gradient Theory for Plasticity Via Homogenization of Discrete Dislocations
,”
J. Eur. Math. Soc.
,
12
(
5
), pp.
1231
1266
.10.4171/JEMS/228
175.
Lubarda
,
V. A.
,
2008
, “
On the Gibbs Conditions of Stable Equilibrium, Convexity and the Second-Order Variations of Thermodynamic Potentials in Nonlinear Thermoelasticity
,”
Int. J. Solids Struct.
,
45
(
1
), pp.
48
63
.10.1016/j.ijsolstr.2007.07.010
176.
Callen
,
H. B.
,
1960
,
Thermodynamics
,
Wiley
,
New York
.
177.
Kuhlmann-Wilsdorf
,
D.
,
1989
, “
Theory of Plastic-Deformation—Properties of Low-Energy Dislocation-Structures
,”
Mater. Sci. Eng. A
,
113
, pp.
1
41
.10.1016/0921-5093(89)90290-6
178.
Kuhlmann-Wilsdorf
,
D.
,
1999
, “
The Theory of Dislocation-Based Crystal Plasticity
,”
Philos. Mag. A
,
79
(
4
), pp.
955
1008
.10.1080/01418619908210342
179.
Dascalu
,
C.
, and
Maugin
,
G. A.
,
1993
, “
Material Forces and Energy-Release Rates in Homogeneous Elastic Bodies With Defects
,”
C. R. Acad. Sci. Ser. Vie Sci.
,
317
(
9
), pp.
1135
1140
.
180.
Maugin
,
G. A.
, and
Trimarco
,
C.
,
1995
, “
On Material and Physical Forces in Liquid-Crystals
,”
Int. J. Eng. Sci.
,
33
(
11
), pp.
1663
1678
.10.1016/0020-7225(95)00025-S
181.
Zaiser
,
M.
, and
Aifantis
,
E. C.
,
2006
, “
Randomness and Slip Avalanches in Gradient Plasticity
,”
Int. J. Plast.
,
22
(
8
), pp.
1432
1455
.10.1016/j.ijplas.2005.07.010
182.
Shishvan
,
S. S.
,
Nicola
,
L.
, and
Van der Giessen
,
E.
,
2010
, “
Bauschinger Effect in Unpassivated Freestanding Thin Films
,”
J. Appl. Phys.
,
107
(
9
), p.
093529
.10.1063/1.3407505
183.
Cleveringa
,
H. H. M.
,
Van der Giessen
,
E.
, and
Needleman
,
A.
,
1999
, “
A Discrete Dislocation Analysis of Residual Stresses in a Composite Material
,”
Philos. Mag. A
,
79
(
4
), pp.
893
920
.10.1080/01418619908210338
184.
Caillard
,
D.
, and
Martin
,
J. L.
,
2003
,
Thermally Activated Mechanisms in Crystal Plasticity
(Pergamon Materials Series, No. 8), D. Caillard and J. L. Martin, eds., Pergamon, Oxford, UK.
185.
Davoudi
,
K. M.
,
Nicola
,
L.
, and
Vlassak
,
J. J.
,
2012
, “
Dislocation Climb in Two-Dimensional Discrete Dislocation Dynamics
,”
J. Appl. Phys.
,
111
(
10
), p.
103522
.10.1063/1.4718432
186.
Coleman
,
B. D.
, and
Gurtin
,
M. E.
,
1967
, “
Thermodynamics With Internal State Variables
,”
J. Chem. Phys.
,
47
(
2
), pp.
597
613
.10.1063/1.1711937
187.
Dahlberg
,
C.
, and
Faleskog
,
J.
,
2012
, “
An Improved Strain Gradient Plasticity Formulation With Energetic Interfaces: Theory and a Fully Implicit Finite Element Formulation
,”
Comput. Mech.
,
51
(
5
), pp.
641
659
.10.1007/s00466-012-0743-5
188.
Roy
,
A.
,
Peerlings
,
R. H. J.
,
Geers
,
M. G. D.
, and
Kasyanyuk
,
Y.
,
2008
, “
Continuum Modeling of Dislocation Interactions: Why Discreteness Matters?
,”
Mater. Sci. Eng. A
,
486
(
1–2
), pp.
653
661
.10.1016/j.msea.2007.09.074
189.
Kröner
,
E.
,
2001
, “
Benefits and Shortcomings of the Continuous Theory of Dislocations
,”
Int. J. Solids Struct.
,
38
(
6–7
), pp.
1115
1134
.10.1016/S0020-7683(00)00077-9
190.
Arsenlis
,
A.
,
Parks
,
D. M.
,
Becker
,
R.
, and
Bulatov
,
V. V.
,
2004
, “
On the Evolution of Crystallographic Dislocation Density in Non-Homogeneously Deforming Crystals
,”
J. Mech. Phys. Solids
,
52
(
6
), pp.
1213
1246
.10.1016/j.jmps.2003.12.007
191.
Geers
,
M. G. D.
,
Brekelmans
,
W. A. M.
, and
Bayley
,
C. J.
,
2007
, “
Second-Order Crystal Plasticity, Internal Stress Effects and Cyclic Loading
,”
Modell. Simul. Mater. Sci. Eng.
,
15
(
1
), pp.
S133
S145
.10.1088/0965-0393/15/1/S12
192.
Geers
,
M. G. D.
,
Peerlings
,
R. H. J.
,
Hoefnagels
,
J. P. M.
, and
Kasyanyuk
,
Y.
,
2009
, “
On a Proper Account of First- and Second-Order Size Effects in Crystal Plasticity
,”
Adv. Eng. Mater.
,
11
(
3
), pp.
143
147
.10.1002/adem.200800287
193.
Limkumnerd
,
S.
, and
Van der Giessen
,
E.
,
2008
, “
Study of Size Effects in Thin Films by Means of a Crystal Plasticity Theory Based on DiFT
,”
J. Mech. Phys. Solids
,
56
(
11
), pp.
3304
3314
.10.1016/j.jmps.2008.06.004
194.
Abu Al-Rub
,
R. K.
,
2008
, “
Interfacial Gradient Plasticity Governs Scale-Dependent Yield Strength and Strain Hardening Rates in Micro/Nano Structured Metals
,”
Int. J. Plast.
,
24
(
8
), pp.
1277
1306
.10.1016/j.ijplas.2007.09.005
195.
Kuroda
,
M.
, and
Tvergaard
,
V.
,
2008
, “
On the Formulations of Higher-Order Strain Gradient Crystal Plasticity Models
,”
J. Mech. Phys. Solids
,
56
(
4
), pp.
1591
1608
.10.1016/j.jmps.2007.07.015
196.
Lee
,
T. C.
,
Robertson
,
I. M.
, and
Birnbaum
,
H. K.
,
1989
, “
Prediction of Slip Transfer Mechanisms Across Grain-Boundaries
,”
Scr. Metall.
,
23
(
5
), pp.
799
803
.10.1016/0036-9748(89)90534-6
197.
Lee
,
T. C.
,
Robertson
,
I. M.
, and
Birnbaum
,
H. K.
,
1990
, “
An In Situ Transmission Electron-Microscope Deformation Study of the Slip Transfer Mechanisms in Metals
,”
Metall. Trans. A
,
21
(
9
), pp.
2437
2447
.10.1007/BF02646988
198.
Sun
,
S.
,
Adams
,
B. L.
, and
King
,
W. E.
,
2000
, “
Observations of Lattice Curvature Near the Interface of a Deformed Aluminium Bicrystal
,”
Philos. Mag. A
,
80
(
1
), pp.
9
25
.10.1080/01418610008212038
199.
Wang
,
M. G.
, and
Ngan
,
A. H. W.
,
2004
, “
Indentation Strain Burst Phenomenon Induced by Grain Boundaries in Niobium
,”
J. Mater. Res.
,
19
(
8
), pp.
2478
2486
.10.1557/JMR.2004.0316
200.
Soer
,
W. A.
, and
De Hosson
,
J. T. M.
,
2005
, “
Detection of Grain-Boundary Resistance to Slip Transfer Using Nanoindentation
,”
Mater. Lett.
,
59
(
24–25
), pp.
3192
3195
.10.1016/j.matlet.2005.03.075
201.
Britton
,
T. B.
,
Randman
,
D.
, and
Wilkinson
,
A. J.
,
2009
, “
Nanoindentation Study of Slip Transfer Phenomenon at Grain Boundaries
,”
J. Mater. Res.
,
24
(
3
), pp.
607
615
.10.1557/jmr.2009.0088
202.
Cermelli
,
P.
, and
Gurtin
,
M. E.
,
2002
, “
Geometrically Necessary Dislocations in Viscoplastic Single Crystals and Bicrystals Undergoing Small Deformations
,”
Int. J. Solids Struct.
,
39
(
26
), pp.
6281
6309
.10.1016/S0020-7683(02)00491-2
203.
Gurtin
,
M. E.
, and
Needleman
,
A.
,
2005
, “
Boundary Conditions in Small-Deformation, Single-Crystal Plasticity That Account for the Burgers Vector
,”
J. Mech. Phys. Solids
,
53
(
1
), pp.
1
31
.10.1016/j.jmps.2004.06.006
204.
Gurtin
,
M. E.
,
2008
, “
A Theory of Grain Boundaries That Accounts Automatically for Grain Misorientation and Grain-Boundary Orientation
,”
J. Mech. Phys. Solids
,
56
(
2
), pp.
640
662
.10.1016/j.jmps.2007.05.002
205.
Aifantis
,
K. E.
, and
Willis
,
J. R.
,
2006
, “
Scale Effects Induced by Strain-Gradient Plasticity and Interfacial Resistance in Periodic and Randomly Heterogeneous Media
,”
Mech. Mater.
,
38
(
8-10
), pp.
702
716
.10.1016/j.mechmat.2005.06.010
206.
Faghihi
,
D.
, and
Voyiadjis
,
G. Z.
,
2012
, “
Determination of Nanoindentation Size Effects and Variable Material Intrinsic Length Scale for Body-Centered Cubic Metals
,”
Mech. Mater.
,
44
, pp.
189
211
.10.1016/j.mechmat.2011.07.002
207.
Wo
,
P. C.
, and
Ngan
,
A. H. W.
,
2004
, “
Investigation of Slip Transmission Behavior Across Grain Boundaries in Polycrystalline Ni3Al Using Nanoindentation
,”
ASME J. Mater. Res.
,
19
(
1
), pp.
189
201
.10.1557/jmr.2004.19.1.189
208.
Shen
,
Z.
,
Wagoner
,
R. H.
, and
Clark
,
W. A. T.
,
1986
, “
Dislocation Pile Up and Grain-Boundary Interactions in 304 Stainless-Steel
,”
Scr. Metall.
,
20
(
6
), pp.
921
926
.10.1016/0036-9748(86)90467-9
209.
Soer
,
W. A.
,
Aifantis
,
K. E.
, and
De Hosson
,
J. T. M.
,
2005
, “
Incipient Plasticity During Nanoindentation at Grain Boundaries in Body-Centered Cubic Metals
,”
Acta Mater.
,
53
(
17
), pp.
4665
4676
.10.1016/j.actamat.2005.07.001
210.
Eliash
,
T.
,
Kazakevich
,
M.
,
Semenov
,
V. N.
, and
Rabkin
,
E.
,
2008
, “
Nanohardness of Molybdenum in the Vicinity of Grain Boundaries and Triple Junctions
,”
Acta Mater.
,
56
(
19
), pp.
5640
5652
.10.1016/j.actamat.2008.07.036
211.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
,
1976
, “
Effect of Surface Stress on Wave-Propagation in Solids
,”
J. Appl. Phys.
,
47
(
10
), pp.
4414
4421
.10.1063/1.322403
212.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
,
1978
, “
Surface Stress in Solids
,”
Int. J. Solids Struct.
,
14
(
6
), pp.
431
440
.10.1016/0020-7683(78)90008-2
213.
Fredriksson
,
P.
, and
Gudmundson
,
P.
,
2005
, “
Size-Dependent Yield Strength and Surface Energies of Thin Films
,”
Mater. Sci. Eng. A
,
400
, pp.
448
450
.10.1016/j.msea.2005.02.090
214.
Shockley
,
W.
, and
Read
,
W. T.
,
1949
, “
Quantitative Predictions From Dislocation Models of Crystal Grain Boundaries
,”
Phys. Rev.
,
75
(
4
), pp.
692
–692.10.1103/PhysRev.75.692
215.
Read
,
W. T.
, and
Shockley
,
W.
,
1950
, “
Dislocation Models of Crystal Grain Boundaries
,”
Phys. Rev.
,
78
(
3
), pp.
275
289
.10.1103/PhysRev.78.275
216.
Aifantis
,
K. E.
, and
Willis
,
J. R.
,
2005
, “
The Role of Interfaces in Enhancing the Yield Strength of Composites and Polycrystals
,”
J. Mech. Phys. Solids
,
53
(
5
), pp.
1047
1070
.10.1016/j.jmps.2004.12.003
217.
Aifantis
,
K. E.
, and
Ngan
,
A. H. W.
,
2007
, “
Modeling Dislocation—Grain Boundary Interactions Through Gradient Plasticity and Nanoindentation
,”
Mater. Sci. Eng. A
,
459
(
1-2
), pp.
251
261
.10.1016/j.msea.2007.01.028
218.
Ohmura
,
T.
,
Minor
,
A. M.
,
Stach
,
E. A.
, and
Morris
,
J. W.
,
2004
, “
Dislocation-Grain Boundary Interactions in Martensitic Steel Observed Through In Situ Nanoindentation in a Transmission Electron Microscope
,”
J. Mater. Res.
,
19
(
12
), pp.
3626
3632
.10.1557/JMR.2004.0474
219.
Abu Al-Rub
,
R. K.
, and
Faruk
,
A. N. M.
,
2010
, “
Coupled Interfacial Energy and Temperature Effects on Size-Dependent Yield Strength and Strain Hardening of Small Metallic Volumes
,”
ASME J. Eng. Mater. Technol.
133
(
1
), p.
011017
.10.1115/1.4002651
220.
Cahn
,
J. W.
, and
Hilliard
,
J. E.
,
1959
, “
Free Energy of a Nonuniform System. III. Nucleation in a Two-Component Incompressible Fluid
,”
J. Chem. Phys.
,
31
(
3
), pp.
688
699
.10.1063/1.1730447
221.
Cahn
,
J. W.
, and
Hilliard
,
J. E.
,
1958
, “
Free Energy of a Nonuniform System. I. Interfacial Free Energy
,”
J. Chem. Phys.
,
28
(
2
), pp.
258
267
.10.1063/1.1744102
222.
Meyers
,
M. A.
, and
Chawla
,
K. K.
,
2009
,
Mechanical Behavior of Materials
, 2nd ed.,
Cambridge University Press
,
Cambridge, UK
, pp.
xxii
, 856.
223.
Chung
,
Y.
,
2007
,
Introduction to Materials Science and Engineering
,
CRC/Taylor & Francis
,
Boca Raton, FL
, p.
287
.
224.
Borg
,
U.
, and
Fleck
,
N. A.
,
2007
, “
Strain Gradient Effects in Surface Roughening
,”
Modell. Simul. Mater. Sci. Eng.
,
15
(
1
), pp.
1
12
.10.1088/0965-0393/15/1/S01
225.
Aifantis
,
K. E.
,
Soer
,
W. A.
,
De Hosson
,
J. T. M.
, and
Willis
,
J. R.
,
2006
, “
Interfaces Within Strain Gradient Plasticity: Theory and Experiments
,”
Acta Mater.
,
54
(
19
), pp.
5077
5085
.10.1016/j.actamat.2006.06.040
226.
Aifantis
,
K. E.
, and
Konstantinidis
,
A. A.
,
2009
, “
Hall-Petch Revisited at the Nanoscale
,”
Mater. Sci. Eng. B
,
163
(
3
), pp.
139
144
.10.1016/j.mseb.2009.05.010
227.
Nieh
,
T. G.
, and
Wang
,
J. G.
,
2005
, “
Hall-Petch Relationship in Nanocrystalline Ni and Be–B Alloys
,”
Intermetallics
,
13
(
3-4
), pp.
377
385
.10.1016/j.intermet.2004.07.029
228.
Abu Al-Rub
,
R. K.
, and
Voyiadjis
,
G. Z.
,
2004
, “
Analytical and Experimental Determination of the Material Intrinsic Length Scale of Strain Gradient Plasticity Theory From Micro- and Nano-Indentation Experiments
,”
Int. J. Plast.
,
20
(
6
), pp.
1139
1182
.10.1016/j.ijplas.2003.10.007
229.
Voyiadjis
,
G. Z.
, and
Abu Al-Rub
,
R. K.
,
2005
, “
Gradient Plasticity Theory With a Variable Length Scale Parameter
,”
Int. J. Solids Struct.
,
42
(
14
), pp.
3998
4029
.10.1016/j.ijsolstr.2004.12.010
230.
Faghihi
,
D.
, and
Voyiadjis
,
G. Z.
,
2010
, “
Size Effects and Length Scales in Nanoindentation for Body-Centred Cubic Materials With Application to Iron
,”
Proc. Inst. Mech. Eng., Part N
,
224
(
1–2
), pp.
5
18
.10.1177/2041309210395457
231.
Anisimov
,
S. I.
,
Kapeliovich
,
B. L.
, and
Perel'Man
,
T. L.
,
1974
, “
Electron Emission From Metal Surfaces Exposed to Ultrashort Laser Pulses
,”
Sov. JETP
,
39
, pp.
375
377
.
232.
Brorson
,
S. D.
,
Fujimoto
,
J. G.
, and
Ippen
,
E. P.
,
1987
, “
Femtosecond Electronic Heat-Transport Dynamics in Thin Gold-Films
,”
Phys. Rev. Lett.
59
(
17
), pp.
1962
1965
.10.1103/PhysRevLett.59.1962
233.
Brorson
,
S. D.
,
Kazeroonian
,
A.
,
Moodera
,
J. S.
,
Face
,
D. W.
,
Cheng
,
T. K.
,
Ippen
,
E. P.
, and
Dresselhaus
,
G.
,
1990
, “
Femtosecond Room-Temperature Measurement of the Electron–Phonon Coupling Constant-Lambda in Metallic Superconductors
,”
Phys. Rev. Lett.
,
64
(
18
), pp.
2172
2175
.10.1103/PhysRevLett.64.2172
234.
Elsayed-Ali
,
H. E.
,
Norris
,
T. B.
,
Pessot
,
M. A.
, and
Mourou
,
G. A.
,
1987
, “
Time-Resolved Observation of Electron–Phonon Relaxation in Copper
,”
Phys. Rev. Lett.
,
58
(
12
), pp.
1212
1215
.10.1103/PhysRevLett.58.1212
235.
Fujimoto
,
J. G.
,
Liu
,
J. M.
,
Ippen
,
E. P.
, and
Bloembergen
,
N.
,
1984
, “
Femtosecond Laser Interaction With Metallic Tungsten and Nonequilibrium Electron and Lattice Temperatures
,”
Phys. Rev. Lett.
,
53
(
19
), pp.
1837
1840
.10.1103/PhysRevLett.53.1837
236.
Qiu
,
T. Q.
, and
Tien
,
C. L.
,
1993
, “
Heat-Transfer Mechanisms During Short-Pulse Laser-Heating of Metals
,”
ASME J. Heat Transfer
,
115
(
4
), pp.
835
841
.10.1115/1.2911377
237.
Voyiadjis
,
G. Z.
, and
Faghihi
,
D.
,
2013
, “
Localization in Stainless Steel Using Microstructural Based Viscoplastic Model
,”
Int. J. Impact Eng.
,
54
, pp.
114
129
.10.1016/j.ijimpeng.2012.10.005
238.
Gurtin
,
M. E.
,
Fried
,
E.
, and
Anand
,
L.
,
2010
,
The Mechanics and Thermodynamics of Continua
,
Cambridge University Press
,
Cambridge, UK
.
239.
Gerberich
,
W. W.
,
Kramer
,
D. E.
,
Tymiak
,
N. I.
,
Volinsky
,
A. A.
,
Bahr
,
D. F.
, and
Kriese
,
M. D.
,
1999
, “
Nanoindentation-Induced Defect-Interface Interactions: Phenomena, Methods and Limitations
,”
Acta Mater.
,
47
(
15–16
), pp.
4115
4123
.10.1016/S1359-6454(99)00270-0
240.
Gouldstone
,
A.
,
Koh
,
H. J.
,
Zeng
,
K. Y.
,
Giannakopoulos
,
A. E.
, and
Suresh
,
S.
,
2000
, “
Discrete and Continuous Deformation During Nanoindentation of Thin Films
,”
Acta Mater.
,
48
(
9
), pp.
2277
2295
.10.1016/S1359-6454(00)00009-4
241.
Giannakopoulos
,
A. E.
, and
Suresh
,
S.
,
1999
, “
Determination of Elastoplastic Properties by Instrumented Sharp Indentation
,”
Scr. Mater.
,
40
(
10
), pp.
1191
1198
.10.1016/S1359-6462(99)00011-1
242.
Larsson
,
P. L.
,
Giannakopoulos
,
A. E.
,
Soderlund
,
E.
,
Rowcliffe
,
D. J.
, and
Vestergaard
,
R.
,
1996
, “
Analysis of Berkovich Indentation
,”
Int. J. Solids Struct.
,
33
(
2
), pp.
221
248
.10.1016/0020-7683(95)00033-7
243.
Hirth
,
J. P.
, and
Lothe
,
J.
,
1982
,
Theory of Dislocations
, 2nd ed.,
Wiley
,
New York
, p.
857
.
244.
Lasalmonie
,
A.
, and
Strudel
,
J. L.
,
1986
, “
Influence of Grain-Size on the Mechanical-Behavior of Some High-Strength Materials
,”
J. Mater. Sci.
,
21
(
6
), pp.
1837
1852
.10.1007/BF00547918
245.
Wan
,
L.
, and
Wang
,
S.
,
2009
, “
Shear Response of the Σ11, 〈1 1 0〉 {1 3 1} Symmetric Tilt Grain Boundary Studied by Molecular Dynamics
,”
Modell. Simul. Mater. Sci. Eng.
,
17
(
4
), p.
045008
.10.1088/0965-0393/17/4/045008
246.
Kumar
,
R.
,
Nicola
,
L.
, and
Van der Giessen
,
E.
,
2009
, “
Density of Grain Boundaries and Plasticity Size Effects: A Discrete Dislocation Dynamics Study
,”
Mater. Sci. Eng. A
,
527
(
1–2
), pp.
7
15
.10.1016/j.msea.2009.08.072
247.
Voyiadjis
,
G. Z.
,
Faghihi
,
D.
, and
Zhang
,
C.
,
2011
, “
Analytical and Experimental Detemination of Rate- and Temperature-Dependent Length Scales Using Nanoindentation Experiments
,”
J. Nanomech. Micromech.
,
1
(
1
), pp.
24
40
.10.1061/(ASCE)NM.2153-5477.0000027
248.
Bisson
,
J. F.
,
Yagi
,
H.
,
Yanagitani
,
T.
,
Kaminskii
,
A.
,
Barabanenkov
,
Y. N.
, and
Ueda
,
K. I.
,
2007
, “
Influence of the Grain Boundaries on the Heat Transfer in Laser Ceramics
,”
Opt. Rev.
,
14
(
1
), pp.
1
13
.10.1007/s10043-007-0001-9
249.
Cahill
,
D. G.
,
Ford
,
W. K.
,
Goodson
,
K. E.
,
Mahan
,
G. D.
,
Majumdar
,
A.
,
Maris
,
H. J.
,
Merlin
,
R.
, and
Phillpot
,
S. R.
,
2003
, “
Nanoscale Thermal Transport
,”
J. Appl. Phy.
,
93
(
2
), pp.
793
818
.10.1063/1.1524305
250.
Swartz
,
E. T.
, and
Pohl
,
R. O.
,
1989
, “
Thermal Boundary Resistance
,”
Rev. Mod. Phy.
,
61
(
3
), pp.
605
668
.10.1103/RevModPhys.61.605
251.
ABAQUS
,
2008
, “
Users' Manual
,”
Habbit, Karlsson and Sorensen, Inc.
,
Providence, RI
.
252.
Nemat-Nasser
,
S.
, and
Guo
,
W. G.
,
2000
, “
High Strain-Rate Response of Commercially Pure Vanadium
,”
Mech. Mater.
,
32
(
4
), pp.
243
260
.10.1016/S0167-6636(99)00056-3
253.
Estrin
,
Y. Z.
,
Isaev
,
N. V.
,
Grigorova
,
T. V.
,
Pustovalov
,
V. V.
,
Fomenko
,
V. S.
,
Shumilin
,
S. E.
,
Braude
,
I. S.
,
Malykhin
,
S. V.
,
Reshetnyak
,
M. V.
, and
Janecek
,
M.
,
2008
, “
Low-Temperature Plastic Strain of Ultrafine-Grain Aluminum
,”
Low Temp. Phys.
,
34
(
8
), pp.
665
671
.10.1063/1.2967513
254.
Ahmed
,
N.
, and
Hartmaier
,
A.
,
2011
, “
Mechanisms of Grain Boundary Softening and Strain-Rate Sensitivity in Deformation of Ultrafine-Grained Metals at High Temperatures
,”
Acta Mater.
,
59
(
11
), pp.
4323
4334
.10.1016/j.actamat.2011.03.056
255.
Haque
,
M. A.
, and
Saif
,
M. T. A.
,
2003
, “
Strain Gradient Effect in Nanoscale Thin Films
,”
Acta Mater.
,
51
(
11
), pp.
3053
3061
.10.1016/S1359-6454(03)00116-2
256.
Han
,
S.
,
Kim
,
T.
,
Lee
,
H.
, and
Lee
,
H.
,
2008
, “
Temperature-Dependent Behavior of Thin Film by Microtensile Testing
,”
2nd Electronics System-Integration Technology Conference
(
ESTC 2008
), Greenwich, UK, Sept. 1–4, pp.
477
480
.10.1109/ESTC.2008.4684394
257.
Xiang
,
Y.
,
Tsui
,
T. Y.
, and
Vlassak
,
J. J.
,
2006
, “
The Mechanical Properties of Freestanding Electroplated Cu Thin Films
,”
ASME J. Mater. Res.
,
21
(
6
), pp.
1607
1618
.10.1557/jmr.2006.0195
258.
Swadener
,
J. G.
,
George
,
E. P.
, and
Pharr
,
G. M.
,
2002
, “
The Correlation of the Indentation Size Effect Measured With Indenters of Various Shapes
,”
J. Mech. Phys. Solids
,
50
(
4
), pp.
681
694
.10.1016/S0022-5096(01)00103-X
259.
Bauschinger
,
J.
,
1881
, “
Tension Prisma Stabe
,”
Civilingenieur
,
27
, pp.
289
301
.
260.
Yefimov
,
S.
,
Groma
,
I.
, and
van der Giessen
,
E.
,
2004
, “
A Comparison of a Statistical-Mechanics Based Plasticity Model With Discrete Dislocation Plasticity Calculations
,”
J. Mech. Phys. Solids
,
52
(
2
), pp.
279
300
.10.1016/S0022-5096(03)00094-2
261.
Taylor
,
G. I.
,
1938
, “
Plastic Strain in Metals
,”
J. Inst. Metals
,
62
, pp.
307
324
.
262.
Mandel
,
J.
,
1973
, “
Thermodynamics and Plasticity
,”
Proceedings of the International Symposium on Foundations of Continuum Thermodynamics
, Bussaco, Portugal, July 22–26, J. J. Delgado Domingas, M. N. R. Nina, and J. H. Whitelaw, eds., Halsted Press, New York, pp.
283
304
.
263.
Hill
,
R.
,
1965
, “
Continuum Micro-Mechanics of Elastoplastic Polycrystals
,”
J. Mech. Phys. Solids
,
13
(
2
), pp.
89
101
.10.1016/0022-5096(65)90023-2
264.
Teodosiu
,
C.
,
1970
, “
A Dynamic Theory of Dislocations and Its Applications to the Theory of the Elastic-Plastic Continuum
,”
Conference on Fundamental Aspects of Dislocation Theory, Gaithersburg, MD, Apr. 21–25, 1969, U.S. National Bureau of Standards
, pp.
837
876
.
265.
Rice
,
J. R.
,
1971
, “
Inelastic Constitutive Relations for Solids: An Internal-Variable Theory and Its Applications to Metal Plasticity
,”
J. Mech. Phys. Solids
,
19
(
6
), pp.
443
455
.10.1016/0022-5096(71)90010-X
266.
Evers
,
L. P.
,
Brekelmans
,
W. A. M.
, and
Geers
,
M. G. D.
,
2004
, “
Scale Dependent Crystal Plasticity Framework With Dislocation Density and Grain Boundary Effects
,”
Int. J. Solids Struct.
,
41
(
18–19
), pp.
5209
5230
.10.1016/j.ijsolstr.2004.04.021
267.
Shi
,
J.
, and
Zikry
,
M. A.
,
2009
, “
Grain–Boundary Interactions and Orientation Effects on Crack Behavior in Polycrystalline Aggregates
,”
Int. J. Solids Struct.
,
46
(
21
), pp.
3914
3925
.10.1016/j.ijsolstr.2009.07.019
268.
Ertürk
,
İ.
,
van Dommelen
,
J. A. W.
, and
Geers
,
M. G. D.
,
2009
, “
Energetic Dislocation Interactions and Thermodynamical Aspects of Strain Gradient Crystal Plasticity Theories
,”
J. Mech. Phys. Solids
,
57
(
11
), pp.
1801
1814
.10.1016/j.jmps.2009.08.003
269.
Han
,
C.-S.
,
Gao
,
H.
,
Huang
,
Y.
, and
Nix
,
W. D.
,
2005
, “
Mechanism-Based Strain Gradient Crystal Plasticity—I. Theory
,”
J. Mech. Phys. Solids
,
53
(
5
), pp.
1188
1203
.10.1016/j.jmps.2004.08.008
270.
Borg
,
U.
,
2007
, “
A Strain Gradient Crystal Plasticity Analysis of Grain Size Effects in Polycrystals
,”
Eur. J. Mech. A
,
26
(
2
), pp.
313
324
.10.1016/j.euromechsol.2006.09.006
271.
Cordero
,
N. M.
,
Gaubert
,
A.
,
Forest
,
S.
,
Busso
,
E. P.
,
Gallerneau
,
F.
, and
Kruch
,
S.
,
2010
, “
Size Effects in Generalised Continuum Crystal Plasticity for Two-Phase Laminates
,”
J. Mech. Phys. Solids
,
58
(
11
), pp.
1963
1994
.10.1016/j.jmps.2010.06.012
272.
Shu
,
J. Y.
, and
Fleck
,
N. A.
,
1999
, “
Strain Gradient Crystal Plasticity: Size-Dependent Deformation of Bicrystals
,”
J. Mech. Phys. Solids
,
47
(
2
), pp.
297
324
.10.1016/S0022-5096(98)00081-7
273.
Kubin
,
L. P.
,
Canova
,
G.
,
Condat
,
M.
,
Devincre
,
B.
,
Pontikis
,
V.
, and
Bréchet
,
Y.
,
1992
, “
Dislocation Microstructures and Plastic Flow: A 3D Simulation
,”
Solid State Phenom.
,
23-24
, pp.
455
472
.10.4028/www.scientific.net/SSP.23-24.455
274.
Vandergiessen
,
E.
, and
Needleman
,
A.
,
1995
, “
Discrete Dislocation Plasticity—A Simple Planar Model
,”
Modell. Simul. Mater. Sci. Eng.
,
3
(
5
), pp.
689
735
.10.1088/0965-0393/3/5/008
275.
Ghoniem
,
N. M.
,
Tong
,
S. H.
, and
Sun
,
L. Z.
,
2000
, “
Parametric Dislocation Dynamics: A Thermodynamics-Based Approach to Investigations of Mesoscopic Plastic Deformation
,”
Phys. Rev. B
,
61
(
2
), pp.
913
927
.10.1103/PhysRevB.61.913
276.
Weygand
,
D.
,
Friedman
,
L. H.
,
Van der Giessen
,
E.
, and
Needleman
,
A.
,
2002
, “
Aspects of Boundary-Value Problem Solutions With Three- Dimensional Dislocation Dynamics
,”
Modell. Simul. Mater. Sci. Eng.
,
10
(
4
), pp.
437
468
.10.1088/0965-0393/10/4/306
277.
Deshpande
,
V. S.
,
Needleman
,
A.
, and
Van der Giessen
,
E.
,
2005
, “
Plasticity Size Effects in Tension and Compression of Single Crystals
,”
J. Mech. Phys. Solids
,
53
(
12
), pp.
2661
2691
.10.1016/j.jmps.2005.07.005
278.
Yasin
,
H.
,
Zbib
,
H. M.
, and
Khaleel
,
M. A.
,
2001
, “
Size and Boundary Effects in Discrete Dislocation Dynamics: Coupling With Continuum Finite Element
,”
Mater. Sci. Eng. A
,
309–310
, pp.
294
299
.10.1016/S0921-5093(00)01731-7
279.
Khraishi
,
T. A.
, and
Zbib
,
H. M.
,
2002
, “
Free-Surface Effects in 3D Dislocation Dynamics: Formulation and Modeling
,”
ASME J. Eng. Mater. Technol.
,
124
(
3
), pp.
342
351
.10.1115/1.1479694
280.
Yan
,
L.
,
Khraishi
,
T. A.
,
Shen
,
Y.-L.
, and
Horstemeyer
,
M. F.
,
2004
, “
A Distributed-Dislocation Method for Treating Free-Surface Image Stresses in Three-Dimensional Dislocation Dynamics Simulations
,”
Modell. Simul. Mater. Sci. Eng.
,
12
(
4
), p.
S289
.10.1088/0965-0393/12/4/S01
281.
Nakano
,
A.
,
Bachlechner
,
M. E.
,
Kalia
,
R. K.
,
Lidorikis
,
E.
,
Vashishta
,
P.
,
Voyiadjis
,
G. Z.
,
Campbell
,
T. J.
,
Ogata
,
S.
, and
Shimojo
,
F.
,
2001
, “
Multiscale Simulation of Nanosystems
,”
Comput. Sci. Eng.
,
3
(
4
), pp.
56
66
.10.1109/5992.931904
282.
Voyiadjis
,
G. Z.
,
Aifantis
,
E. C.
, and
Weber
,
G.
,
2003
, “
Constitutive Modeling of Plasticity in Nanostructured Materials
,”
Trends in Nanoscale Mechanics: Analysis of Nanostructured Materials and Multi-Scale Modeling,
V. M.
Harik
, and
M. D.
Salas
, eds.,
Kluwer Academic Publishers
,
Amsterdam, The Netherlands
, Chap. 5.
283.
Nair
,
A. K.
,
Parker
,
E.
,
Gaudreau
,
P.
,
Farkas
,
D.
, and
Kriz
,
R. D.
,
2008
, “
Size Effects in Indentation Response of Thin Films at the Nanoscale: A Molecular Dynamics Study
,”
Int. J. Plast.
,
24
(
11
), pp.
2016
2031
.10.1016/j.ijplas.2008.01.007
284.
Chandra
,
N.
, and
Dang
,
P.
,
1999
, “
Atomistic Simulation of Grain Boundary Sliding and Migration
,”
J. Mater. Sci.
,
34
(
4
), pp.
655
666
.10.1023/A:1004531706998
285.
Salahshoor
,
H.
, and
Rahbar
,
N.
,
2012
, “
Nano-Scale Fracture Toughness and Behavior of Graphene/Epoxy Interface
,”
J. Appl. Phys.
,
112
(
2
), p.
023510
.10.1063/1.4737776
286.
Tan
,
T.
,
Meng
,
J.
,
Rahbar
,
N.
,
Li
,
H.
,
Papandreou
,
G.
,
Maryanoff
,
C. A.
, and
Soboyejo
,
W. O.
,
2012
, “
Effects of Silane on the Interfacial Fracture of a Parylene Film Over a Stainless Steel Substrate
,”
Mater. Sci. Eng. C
,
32
(
3
), pp.
550
557
.10.1016/j.msec.2011.12.008
287.
Samvedi
,
V.
, and
Tomar
,
V.
,
2009
, “
Role of Interface Thermal Boundary Resistance in Overall Thermal Conductivity of Si-Ge Multi-Layered Structures
,”
Nanotechnology
,
20
(
36
), p.
365701
.10.1088/0957-4484/20/36/365701
288.
Che
,
J.
,
Çağın
,
T.
,
Deng
,
W.
, and
Goddard
,
W. A.
,
2000
, “
Thermal Conductivity of Diamond and Related Materials From Molecular Dynamics Simulations
,”
J. Chem. Phys.
,
113
(
16
), pp.
6888
6900
.10.1063/1.1310223
289.
Li
,
J.
,
Porter
,
L.
, and
Yip
,
S.
,
1998
, “
Atomistic Modeling of Finite-Temperature Properties of Crystalline β-SiC: II. Thermal Conductivity and Effects of Point Defects
,”
J. Nucl. Mater.
,
255
(
2–3
), pp.
139
152
.10.1016/S0022-3115(98)00034-8
290.
Volz
,
S.
,
Saulnier
,
J. B.
,
Chen
,
G.
, and
Beauchamp
,
P.
,
2000
, “
Computation of Thermal Conductivity of Si/Ge Superlattices by Molecular Dynamics Techniques
,”
Microelectron. J.
,
31
(
9–10
), pp.
815
819
.10.1016/S0026-2692(00)00064-1
291.
Daly
,
B. C.
,
Maris
,
J. H.
,
Imamura
,
K.
, and
Tamura
,
S.
,
2002
,
Molecular Dynamics Calculation of the Thermal Conductivity of Superlattices
, Vol.
66
,
American Physical Society
,
Ridge, NY
.
292.
Abramson
,
A. R.
,
Tien
,
C.-L.
, and
Majumdar
,
A.
,
2002
, “
Interface and Strain Effects on the Thermal Conductivity of Heterostructures: A Molecular Dynamics Study
,”
ASME J. Heat Transfer
,
124
(
5
), pp.
963
970
.10.1115/1.1495516
293.
Lee
,
Y. H.
,
Biswas
,
R.
,
Soukoulis
,
C. M.
,
Wang
,
C. Z.
,
Chan
,
C. T.
, and
Ho
,
K. M.
,
1991
, “
Molecular-Dynamics Simulation of Thermal Conductivity in Amorphous Silicon
,”
Phys. Rev. B
,
43
(
8
), pp.
6573
6580
.10.1103/PhysRevB.43.6573
294.
Ding
,
K.
, and
Andersen
,
H. C.
,
1986
, “
Molecular-Dynamics Simulation of Amorphous Germanium
,”
Phys. Rev. B
,
34
(
10
), pp.
6987
6991
.10.1103/PhysRevB.34.6987
295.
Tomar
,
V.
, and
Gan
,
M.
,
2011
, “
Temperature Dependent Nanomechanics of Si-C-N Nanocomposites With an Account of Particle Clustering and Grain Boundaries
,”
Int. J. Hydrogen Energy
,
36
(
7
), pp.
4605
4616
.10.1016/j.ijhydene.2010.03.070
296.
Izvekov
,
S.
,
Chung
,
P. W.
, and
Rice
,
B. M.
,
2010
, “
The Multiscale Coarse-Graining Method: Assessing Its Accuracy and Introducing Density Dependent Coarse-Grain Potentials
,”
J. Chem. Phys.
,
133
(
6
), p.
064109
.10.1063/1.3464776
297.
Farrell
,
K.
, and
Oden
,
J. T.
,
2014
, “
Calibration and Validation Methods of Coarse-Grained Models of Atomic Systems: Application to Semiconductor Manufacturing
,”
Comput. Mech.
,
54
(
1
), pp.
3
19
.10.1007/s00466-014-1028-y
298.
Curtin
,
W. A.
, and
Miller
,
R.
,
2003
, “
Atomistic/Continuum Coupling in Computational Materials Science
,”
Modell. Simul. Mater. Sci. Eng.
,
11
(
3
), p.
R33
.10.1088/0965-0393/11/3/201
299.
Weinan
,
E.
,
Li
,
X.
, and
Vanden-Eijnden
,
E.
,
2004
, “
Some Recent Progress in Multiscale Modeling
,”
Multiscale Modelling and Simulation
,
S.
Attinger
and
P.
Koumoutsakos
, eds.,
Springer
,
Berlin
, pp.
3
21
.
300.
Liu
,
W. K.
,
Karpov
,
E. G.
,
Zhang
,
S.
, and
Park
,
H. S.
,
2004
, “
An Introduction to Computational Nanomechanics and Materials
,”
Comput. Methods Appl. Mech. Eng.
,
193
(
17–20
), pp.
1529
1578
.10.1016/j.cma.2003.12.008
301.
Bauman
,
P. T.
,
Dhia
,
H. B.
,
Elkhodja
,
N.
,
Oden
,
J. T.
, and
Prudhomme
,
S.
,
2008
, “
On the Application of the Arlequin Method to the Coupling of Particle and Continuum Models
,”
Comput. Mech.
,
42
(
4
), pp.
511
530
.10.1007/s00466-008-0291-1
302.
Bauman
,
P. T.
,
Oden
,
J. T.
, and
Prudhomme
,
S.
,
2009
, “
Adaptive Multiscale Modeling of Polymeric Materials With Arlequin Coupling and Goals Algorithms
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
5–8
), pp.
799
818
.10.1016/j.cma.2008.10.014
303.
Prudhomme
,
S.
,
Bauman
,
P. T.
, and
Oden
,
J. T.
,
2006
, “
Error Control for Molecular Statics Problems
,”
Int. J. Multiscale Comput. Eng.
,
4
(
5-6
), pp.
647
662
.10.1615/IntJMultCompEng.v4.i5-6.60
304.
Oden
,
J. T.
,
Prudhomme
,
S.
,
Romkes
,
A.
, and
Bauman
,
P. T.
,
2005
, “
Multiscale Modeling of Physical Phenomena: Adaptive Control of Models
,”
SIAM J. Sci. Comput.
,
28
(
6
), pp.
2359
2389
.10.1137/050632488
You do not currently have access to this content.