In the present investigation, the applicability of a previously developed closed form energy based framework to predict low cycle fatigue (LCF) life of aluminum 6061-T6 was extended from room temperature to elevated temperature. The three different elevated temperatures considered in the present investigation were 75 °C, 100 °C, and 125 °C which were below the creep activation temperature for aluminum 6061-T6. Like the room temperature life assessment framework, the elevated temperature life assessment framework involved computation of the Ramberg–Osgood cyclic parameters from the average plastic strain range and the average plastic energy obtained from an axial isothermal-mechanical fatigue (IMF) test. The temperature dependent cyclic parameters were computed for 25 °C (room temperature), 75 °C, and 100 °C and then extrapolated to 125 °C utilizing functions describing the dependence of the cyclic parameters on temperature. For aluminum 6061-T6, the cyclic parameters were found to decrease with increase of temperature in a quadratic fashion. Furthermore, the present energy based axial IMF framework was found to be able to predict the LCF life of aluminum 6061-T6 at both room and elevated temperatures with excellent accuracy.

References

1.
George
,
T.
,
Seidt
,
J.
,
Shen
,
M.-H. H.
,
Cross
,
C.
, and
Nicholas
,
T.
,
2004
, “
Development of a Novel Vibration-Based Fatigue Testing Methodology
,”
Int. J. Fatigue
,
26
(
5
), pp.
477
486
.10.1016/j.ijfatigue.2003.10.012
2.
Shen
,
M.-H. H.
,
Seidt
,
J.
,
George
,
T.
,
Cross
,
C.
,
Whaley
,
P. W.
, and
Nicholas
,
T.
,
2001
, “
Development of a Novel Method for Evaluating Material Behavior Under Turbine Engine Operating Conditions, Part II: An Empirical Vibration-Based Fatigue Assessment Framework
,”
6th National Turbine Engine High Cycle Fatigue Conference
, Jacksonville, FL, Mar. 5–8.
3.
George
,
T.
,
Shen
,
M.-H. H.
,
Scott-Emuakpor
,
O.
,
Nicholas
,
T.
,
Cross
,
C.
, and
Calcaterra
,
J.
,
2005
, “
Goodman Diagram Via Vibration-Based Fatigue Testing
,”
ASME J. Eng. Mater. Technol.
,
127
(
1
), pp.
58
64
.10.1115/1.1836791
4.
Jasper
,
T.
,
1923
, “
The Value of the Energy Relation in Testing of Ferrous Metals at Varying Ranges of Stress and at Intermediate High Temperatures
,”
London, Edinburgh Dublin Philos. Mag. J. Sci.
,
46
(
274
), pp.
609
627
.10.1080/14786442308634287
5.
Hanstock
,
R.
,
1947
, “
Damping Capacity, Strain Hardening and Fatigue
,”
Proc. Phys. Soc.
,
59
(
2
), pp.
275
287
.10.1088/0959-5309/59/2/311
6.
Feltner
,
C. E.
, and
Morrow
,
J. D.
,
1961
, “
Microplastic Strain Hysteresis Energy as a Criterion for Fatigue Fracture
,”
ASME J. Fluids Eng.
,
83
(
1
), pp.
15
22
.10.1115/1.3658884
7.
Amiri
,
M.
,
Naderi
,
M.
, and
Khonsari
,
M. M.
,
2009
, “
An Experimental Approach to Evaluate the Critical Damage
,”
Int. J. Damage Mech.
,
20
(
1
), pp.
89
112
.10.1177/1056789509343082
8.
Enomoto
,
N.
,
1955
, “
On Fatigue Test Under Progressive Stress
,”
Am. Soc. Test. Mater.
,
55
, pp.
903
917
.
9.
Stowell
,
E. Z.
,
1966
, “
A Study of the Energy Criterion for Fatigue
,”
Nucl. Eng. Des.
,
3
(
1
), pp.
32
40
.10.1016/0029-5493(66)90146-4
10.
Scott-Emuakpor
,
O.
,
Shen
,
M.-H. H.
,
George
,
T.
,
Cross
,
C. J.
, and
Calcaterra
,
J.
,
2007
, “
Development of an Improved High Cycle Fatigue Criterion
,”
ASME J. Eng. Gas Turbines Power
,
129
(
1
), pp.
162
169
.10.1115/1.2360599
11.
Scott-Emuakpor
,
O. E.
,
Shen
,
H.
,
George
,
T.
, and
Cross
,
C.
,
2008
, “
An Energy-Based Uniaxial Fatigue Life Prediction Method for Commonly Used Gas Turbine Engine Materials
,”
ASME J. Eng. Gas Turbines Power
,
130
(
6
), p. 062504.10.1115/1.2943152
12.
Scott-Emuakpor
,
O.
,
Shen
,
M.-H. H.
,
George
,
T.
, and
Cross
,
C.
,
2009
, “
Multi-Axial Fatigue-Life Prediction Via a Strain-Energy Method
,”
AIAA J.
,
48
(
1
), pp.
63
72
.10.2514/1.39296
13.
Ozaltun
,
H.
,
Shen
,
M.-H. H.
,
George
,
T.
, and
Cross
,
C.
,
2011
, “
An Energy Based Fatigue Life Prediction Framework for In-Service Structural Components
,”
Exp. Mech.
,
51
(
5
), pp.
707
718
.10.1007/s11340-010-9365-z
14.
Wertz
,
J.
,
Letcher
,
T.
,
Shen
,
M.-H. H.
,
Scott-Emuakpor
,
O.
,
George
,
T.
, and
Cross
,
C.
,
2011
, “
An Energy-Based Axial Isothermal-Mechanical Fatigue Lifing Method
,”
ASME J. Eng. Gas Turbines Power
,
134
(
10
), p. 102502.10.1115/1.4007121
15.
Letcher
,
T.
,
Shen
,
H.
,
Scott-Emuakpor
,
O.
,
George
,
T.
, and
Cross
,
C.
,
2012
, “
An Energy Based Critical Fatigue Life Prediction Method for AL6061-T6
,”
Fatigue Fract. Eng. Mater. Struct.
,
35
(
9
), pp.
861
870
.10.1111/j.1460-2695.2011.01669.x
16.
Shen
,
M.-H.
, and
Akanda
,
S. R.
,
2014
, “
A Modified Closed Form Energy Based Framework for Fatigue Life Assessment for Aluminum 6061-T6—Damaging Energy Approach
,”
ASME J. Eng. Mater. Technol.
,
137
(
2
), p.
021008
.10.1115/1.4029532
17.
Shen
,
M.-H. H.
, and
Akanda
,
S. R.
,
2015
, “
An Energy-Based Framework to Determine the Fatigue Strength and Ductility Parameters for Life Assessment of Turbine Materials
,”
ASME J. Eng. Gas Turbines Power
,
137
(
7
), p.
072503
.10.1115/1.4029204
You do not currently have access to this content.