Abstract

In this study, the effect of different boriding parameters on some mechanical properties and corrosion resistance of AISI H11 steel, which is extensively used in hot and cold processing applications, was investigated. The grown boride layers were compact and crack-free for all boriding conditions, and they were detected as single phase (Fe2B) at 800 °C and dual phase (FeB + Fe2B) at 900 and 1000 °C. Depending on the treatment condition, the thickness, surface hardness, and Ra values of the coatings were ranged 10.25–94.5 µm, 1704–2015 HV, and 0.285–0.650 µm, respectively. The corrosion resistance was observed to be related to the phase structure, coating thickness, surface roughness, and the density of the boride layers. There is found to be an increase in the corrosion resistance up to almost 65 times after the boriding process, due to the barrier effect of the grown boride layers (such as B2O3).

References

1.
Kaszynski
,
J.
, and
Breitler
,
R.
,
2002
, “
How the Steelmaking Process Influences the Properties of Hot Work Die Steels
,”
Society of Manufacturing Engineers
, Technical Paper, pp.
1
12
.
2.
Ma
,
L.
,
Luo
,
Y.
,
Wang
,
Y.
,
Du
,
W.
,
Song
,
Z.
, and
Zhang
,
J.
,
2018
, “
Fatigue and Ratcheting Assessment of AISI H11 at 500 °C Using Constitutive Theory Coupled With Damage Rule
,”
Fatigue Fract. Eng. Mater. Struct.
,
41
(
3
), pp.
642
652
.
3.
Podgornik
,
B.
,
Puš
,
G.
,
Žužek
,
B.
,
Leskovšek
,
V.
, and
Godec
,
M.
,
2018
, “
Heat Treatment Optimization and Properties Correlation for H11-Type Hot-Work Tool Steel
,”
Metall. Mater. Trans. A
,
49
(
2
), pp.
455
462
.
4.
Qamar
,
S. Z.
,
2015
, “
Heat Treatment and Mechanical Testing of AISI H11 Steel
,”
Key Eng. Mater.
,
656–657
, pp.
434
439
.
5.
Gök
,
M. S.
,
Küçük
,
Y.
,
Erdoğan
,
A.
,
Öge
,
M.
,
Kanca
,
E.
, and
Günen
,
A.
,
2017
, “
Dry Sliding Wear Behavior of Borided Hot-Work Tool Steel at Elevated Temperatures
,”
Surf. Coat. Technol.
,
328
, pp.
54
62
.
6.
Šebek
,
M.
,
2017
, “
The Effects of Laser Surface Hardening on Microstructural Characteristics and Wear Resistance of AISI H11 Hot Work Tool Steel
,”
Arch. Metall. Mater.
,
62
(
3)
, pp.
1721
1726
.
7.
Balusamy
,
T.
,
Narayanan
,
T. S.
,
Ravichandran
,
K.
,
Park
,
I. S.
, and
Lee
,
M. H.
,
2013
, “
Pack Boronizing of AISI H11 Tool Steel: Role of Surface Mechanical Attrition Treatment
,”
Vacuum
,
97
, pp.
36
43
.
8.
Telasang
,
G.
,
Dutta Majumdar
,
J.
,
Padmanabham
,
G.
, and
Manna
,
I.
,
2015
, “
Wear and Corrosion Behavior of Laser Surface Engineered AISI H13 Hot Working Tool Steel
,”
Surf. Coat. Technol.
,
261
, pp.
69
78
.
9.
Kariofillis
,
G. K.
,
Kiourtsidis
,
G. E.
, and
Tsipas
,
D. N.
,
2006
, “
Corrosion Behavior of Borided AISI H13 Hot Work Steel
,”
Surf. Coat. Technol.
,
201
(
1–2
), pp.
19
24
.
10.
Vega-Morón
,
R. C.
,
Rodríguez-Castro
,
G. A.
,
Jiménez-Tinoco
,
L. F.
,
Meneses-Amador
,
A.
,
Méndez-Méndez
,
J. V.
,
Escobar-Hernández
,
J.
, and
Nava-Sánchez
,
J. L.
,
2018
, “
Multipass Scratch Behavior of Borided and Nitrided H13 Steel
,”
J. Mater. Eng. Perform.
,
27
(
8
), pp.
3886
3899
.
11.
ASM International
,
1990
,
ASM Handbook, Volume 1: Properties and Selection: Irons, Steels, and High-Performance Alloys
,
ASM International
,
OH
, p.
1063
.
12.
Bardal
,
E.
,
2000
,
Corrosion and Protection
,
Springer Science & Business Media
,
Berlin
, p.
315
.
13.
Davis
,
J. R.
,
2014
,
Surface Engineering for Corrosion and Wear Resistance
,
CRC Press Taylor & Francis Group
,
OH
, p.
289
.
14.
Günen
,
A.
,
Kanca
,
Y.
,
Karahan
,
İ. H.
,
Karakaş
,
M. S.
,
Gök
,
M. S.
,
Kanca
,
E.
, and
Çürük
,
A.
,
2018
, “
A Comparative Study on the Effects of Different Thermochemical Coating Techniques on Corrosion Resistance of STKM-13A Steel
,”
Metall. Mater. Trans. A
,
49
(
11
), pp.
5833
5847
.
15.
Deng
,
J.
,
Wu
,
F.
,
Lian
,
Y.
,
Xing
,
Y.
, and
Li
,
S.
,
2012
, “
Erosion Wear of CrN, TiN, CrAlN, and TiAlN PVD Nitride Coatings
,”
Int. J. Refract. Met. Hard Mater.
,
35
, pp.
10
16
.
16.
Salem
,
M.
,
Le Roux
,
S.
,
Dour
,
G.
,
Lamesle
,
P.
,
Choquet
,
K.
, and
Rézaï-Aria
,
F.
,
2019
, “
Effect of Aluminizing and Oxidation on the Thermal Fatigue Damage of Hot Work Tool Steels for High Pressure Die Casting Applications
,”
Int. J. Fatigue
,
119
, pp.
126
138
.
17.
Peng
,
D. Q.
,
Bai
,
X. D.
,
Sun
,
H.
, and
Chen
,
B. S.
,
2007
, “
Effect of Copper Ions Implantation on Corrosion Behavior of Zirconium in 1 M H2SO4
,”
Int. J. Refract. Met. Hard Mater.
,
25
(
1
), pp.
32
38
.
18.
Picas
,
J. A.
,
Forn
,
A.
,
Baile
,
M. T.
, and
Martı´n
,
E.
,
2005
, “
Substrate Effect on the Mechanical and Tribological Properties of Arc Plasma Physical Vapour Deposition Coatings
,”
Int. J. Refract. Met. Hard Mater.
,
23
(
4–6
), pp.
330
334
.
19.
Qiu
,
L.
,
Du
,
Y.
,
Wang
,
S.
,
Li
,
K.
,
Yin
,
L.
,
Wu
,
L.
, and
Albir
,
L.
,
2019
, “
Mechanical Properties and Oxidation Resistance of Chemically Vapor Deposited TiSiN Nanocomposite Coating With Thermodynamically Designed Compositions
,”
Int. J. Refract. Met. Hard Mater.
,
80
, pp.
30
39
.
20.
Zadi
,
M.
,
Rouhaghdam
,
A. S.
,
Ahangarani
,
S.
, and
Mofidi
,
H. H.
,
2014
, “
Mechanical Behavior of TiN/TiC Multilayer Coatings Fabricated by Plasma Assisted Chemical Vapor Deposition on AISI H13 Hot Work Tool Steel
,”
Surf. Coat. Technol.
,
245
, pp.
156
166
.
21.
Çiçek
,
A.
,
Kara
,
F.
,
Kivak
,
T.
, and
Ekici
,
E.
,
2013
, “
Evaluation of Machinability of Hardened and Cryo-Treated AISI H13 Hot Work Tool Steel With Ceramic Inserts
,”
Int. J. Refract. Met. Hard Mater.
,
41
, pp.
461
469
.
22.
Kulka
,
M.
,
2019
, “Trends in Thermochemical Techniques of Boriding,”
Current Trends in Boriding
,
Springer
,
Cham
, pp.
17
98
.
23.
Campos-Silva
,
I. E.
, and
Rodríguez-Castro
,
G. A.
,
2015
, “Improving Materials Performance,”
Thermochemical Surface Engineering of Steels
,
E. J.
Mittemeijer
and
M. A. J.
Somers
,
Woodhead Publishing
,
Oxford
, pp.
651
702
.
24.
Jibo
,
J.
,
Yi
,
W.
,
Qingdong
,
Z.
,
Qiongyu
,
Z.
, and
Lei
,
Z.
,
2011
, “
Preparation of Fe2B Boride Coating on Low-Carbon Steel Surfaces and Its Evaluation of Hardness and Corrosion Resistance
,”
Surf. Coat. Technol.
,
206
(
2–3
), pp.
473
478
.
25.
Gunes
,
I.
,
Erdogan
,
M.
, and
Çelik
,
A. G.
,
2014
, “
Corrosion Behavior and Characterization of Plasma Nitrided and Borided AISI M2 Steel
,”
Mater. Res.
,
17
(
3
), pp.
612
618
.
26.
Naemchanthara
,
P.
, and
Juijerm
,
P.
,
2018
, “
Effects of Heat Treatment on Phase Transformation and Corrosion Resistance of Boride Layer on Austenitic Stainless Steel AISI 304
,”
Metall. Mater. Trans. B
,
49
(
5
), pp.
2875
2880
.
27.
Tavakoli
,
H.
, and
Khoie
,
S. M.
,
2010
, “
An Electrochemical Study of the Corrosion Resistance of Boride Coating Obtained by Thermo-Reactive Diffusion
,”
Mater. Chem. Phys.
,
124
(
2–3
), pp.
1134
1138
.
28.
Wang
,
H.
,
Zhao
,
Y.
,
Yuan
,
X.
,
Chen
,
K.
, and
Xu
,
R.
,
2013
, “
Effects of Boronizing Treatment on Corrosion Resistance of 65Mn Steel in Two Acid Mediums
,”
Phys. Procedia
,
50
, pp.
124
130
.
29.
Günen
,
A.
, and
Kanca
,
E.
,
2017
, “
Characterization of Borided Inconel 625 Alloy With Different Boron Chemicals
,”
Pamukkale Univ. Muh. Bilim. Derg.
,
23
(
4
), pp.
411
416
.
30.
Gunen
,
A.
,
Ulutan
,
M.
,
Gok
,
M. S.
,
Kurt
,
B.
, and
Orhan
,
N.
,
2014
, “
Friction and Wear Behaviour of Borided AISI 304 Stainless Steel With Nano Particle and Micro Particle Size of Boriding Agents
,”
J. Balk. Tribol. Assoc.
,
20
(
3
), pp.
362
379
.
31.
Günen
,
A.
,
Kurt
,
B.
,
Orhan
,
N.
, and
Kanca
,
E.
,
2014
, “
The Investigation of Corrosion Behavior of Borided AISI 304 Austenitic Stainless Steel With Nanoboron Powder
,”
Protect. Met. Phys. Chem. Surf.
,
50
(
1
), pp.
104
110
.
32.
Karakaş
,
M. S.
,
Günen
,
A.
,
Kanca
,
E.
, and
Yılmaz
,
E.
,
2018
, “
Boride Layer Growth Kinetics of AISI H13 Steel Borided With Nano-Sized Powders
,”
Arch. Metall. Mater.
,
63
(
1
), pp.
159
165
.
33.
Günen
,
A.
,
Kanca
,
E.
,
Karakaş
,
M. S.
,
Koç
,
V.
,
Gök
,
M. S.
,
Kanca
,
Y.
, and
Demir
,
M.
,
2018
, “
High Temperature Wear Behavior of the Surface-Modified Externally Cooled Rolls
,”
Surf. Coat. Technol.
,
348
, pp.
130
141
.
34.
Calik
,
A.
,
Taylan
,
F.
,
Sahin
,
O.
, and
Ucar
,
N.
,
2009
, “
Comparison of Mechanical Properties of Boronized and Vanadium Carbide Coated AISI 1040 Steels
,”
Acta Phys. Pol.
116
(
16
), pp.
326
330
.
35.
Chicco
,
B.
,
Borbidge
,
W. E.
, and
Summerville
,
E.
,
1998
, “
Engineering the Subsurface of Borided AISI H13 Steel
,”
Surf. Eng.
,
14
(
1
), pp.
25
30
.
36.
Toloei
,
A.
,
AStoilov
,
V.
, and
Northwood
,
D.
,
2013
, “
The Relationship Between Surface Roughness and Corrosion
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition
, Vol.
2b
,
San Diego, CA
,
Nov. 15–21
, pp.
65498
65508
.
37.
Şahin
,
S.
,
2009
, “
Effects of Boronizing Process on the Surface Roughness and Dimensions of AISI 1020, AISI 1040 and AISI 2714
,”
J. Mater. Process. Technol.
,
209
(
4
), pp.
1736
1741
.
38.
Taktak
,
S.
,
2007
, “
Some Mechanical Properties of Borided AISI H13 and 304 Steels
,”
Mater. Des.
,
28
(
6
), pp.
1836
1843
.
39.
Li
,
B.
,
Zhang
,
W.
,
Li
,
D.
, and
Wang
,
J.
,
2019
, “
Electrodeposition of Ni-W/ZrO2 Nanocrystalline Film Reinforced by CeO2 Nanoparticles: Structure, Surface Properties and Corrosion Resistance
,”
Mater. Chem. Phys.
,
229
, pp.
495
507
.
40.
Li
,
B.
,
Zhang
,
W.
,
Huan
,
Y.
, and
Dong
,
J.
,
2018
, “
Synthesis and Characterization of Ni-B/Al2O3 Nanocomposite Coating by Electrodeposition Using Trimethylamine Borane as Boron Precursor
,”
Surf. Coat. Technol.
,
337
, pp.
186
197
.
41.
Ley
,
N.
,
Joshi
,
S. S.
,
Zhang
,
B.
,
Ho
,
Y. H.
,
Dahotre
,
N. B.
, and
Young
,
M. L.
,
2018
, “
Laser Coating of a CrMoTaWZr Complex Concentrated Alloy Onto a H13 Tool Steel Die Head
,”
Surf. Coat. Technol.
,
348
, pp.
150
158
.
42.
Bolelli
,
G.
,
Lusvarghi
,
L.
, and
Giovanard
,
R.
,
2008
, “
A Comparison Between the Corrosion Resistances of Some HVOF-Sprayed Metal Alloy Coatings
,”
Surf. Coat. Technol.
,
202
(
19
), pp.
4793
4809
.
You do not currently have access to this content.