Abstract

In this paper, a coating–substrate interfacial corrosion test method was developed to simulate and study the failure processes occurring at the coating interface as a direct consequence of environment-induced degradation or corrosion. It was found that the corrosion-induced failure rate of the coating–substrate interface upon exposure to an aggressive corrosive medium was high. Microscopic pits tend to appear at the interface of the coating and the substrate. The permeation channel at the coating interface did cause the corrosive medium, primarily the chloride ions, to gradually diffuse from the sides of the sample to the inner surface of the interface thereby enabling the initiation and continued progression of “local” corrosion. The process for failure due essentially to corrosion of the coating was established, while ensuring to include the infiltration phase, the presence of “local” corrosion phases, expansion, if any, due to corrosion, and eventually culminating in failure. Based on the experimental results, a finite element simulation of the “local” corrosion occurring at the coating interface was executed. The results revealed the microscopic pits at the interface to progressively increase the “local” stress concentration on the surface of the substrate but were found to have little influence on overall stress distribution in the coating. It was also found the shape of the etch pit had an effect on failure expansion under the influence of stress. The numerical method can be used to predict structural failure caused by corrosion pits at the interface of the coating–substrate system in an aggressive environment.

References

1.
Reehorst
,
A.
,
Chung
,
J.
,
Potapczuk
,
M.
, and
Choo
,
Y.
,
2000
, “
Study of Icing Effects on Performance and Controllability of an Accident Aircraft
,”
J. Aircr.
,
37
(
2
), pp.
253
259
. 10.2514/2.2588
2.
Nishimura
,
R.
,
Shiraishi
,
D.
, and
Maeda
,
Y.
,
2004
, “
Hydrogen Permeation and Corrosion Behavior of High Strength Steel MCM 430 in Cyclic Wet–Dry SO2 Environment
,”
Corros. Sci.
,
46
(
1
), pp.
225
243
. 10.1016/S0010-938X(03)00141-0
3.
Wall
,
F. D.
,
Martinez
,
M. A.
,
Missert
,
N. A.
,
Copeland
,
R. G.
, and
Kilgo
,
A. C.
,
2005
, “
Characterizing Corrosion Behavior Under Atmospheric Conditions Using Electrochemical Techniques
,”
Corros. Sci.
,
47
(
1
), pp.
17
32
. 10.1016/S0010-938X(03)00081-7
4.
Suegama
,
P. H.
,
Fugivara
,
C. S.
,
Benedetti
,
A. V.
,
Fernández
,
J.
,
Delgado
,
J.
, and
Guilemany
,
J. M.
,
2005
, “
Electrochemical Behavior of Thermally Sprayed Stainless Steel Coatings in 3.4% Nacl Solution
,”
Corros. Sci.
,
47
(
3
), pp.
605
620
. 10.1016/j.corsci.2004.07.003
5.
Park
,
J. H.
,
Lee
,
G. D.
,
Ooshige
,
H.
,
Nishikata
,
A.
, and
Tsuru
,
T.
,
2003
, “
Monitoring of Water Uptake in Organic Coatings Under Cyclic wet-dry Condition
,”
Corros. Sci.
,
45
(
8
), pp.
1881
1894
. 10.1016/S0010-938X(03)00024-6
6.
Dobrzański
,
L. A.
,
Sliwa
,
A.
, and
KwasNy
,
W.
,
2005
, “
Employment of the Finite Element Method for Determining Stresses in Coatings Obtained on High-Speed Steel With the PVD Process
,”
J. Mater. Process. Technol.
,
164–165
, pp.
1192
1196
. 10.1016/j.jmatprotec.2005.02.134
7.
Mario
,
D. G. D.
,
Vogelsang
,
J.
,
Fedrizzi
,
L.
, and
Deflorian
,
F.
,
1999
, “
Water Up-take Evaluation of New Waterborne and High Solid Epoxy Coatings. Part II: Electrochemical Impedance Spectroscopy
,”
Prog. Org. Coat.
,
37
(
1–2
), pp.
57
67
. 10.1016/s0300-9440(99)00056-9
8.
Bierwagen
,
G. P.
,
Twite
,
R.
,
Chen
,
G.
, and
Tallman
,
D. E.
,
1997
, “
Atomic Force Microscopy, Scanning Electron Microscopy and Electrochemical Characterization of al Alloys, Conversion Coatings, and Primers Used for Aircraft
,”
Prog. Org. Coat.
,
32
(
1–4
), pp.
25
30
. 10.1016/S0300-9440(97)00097-0
9.
Mrad
,
M.
,
Amor
,
Y. B.
,
Dhouibi
,
L.
, and
Montemor
,
M. F.
,
2018
, “
Corrosion Prevention of AA2024-T3 Aluminum Alloy With a Polyaniline/Poly(γ-Glycidoxypropyltrimethoxysilane) Bi-layer Coating: Comparative Study With Polyaniline Mono-layer Feature
,”
Surf. Coat. Technol.
,
337
(
1
), pp.
1
11
. 10.1016/j.surfcoat.2017.12.053
10.
Khalifeh
,
R.
,
Lescop
,
B.
,
Gallée
,
F.
, and
Rioual
,
S.
,
2016
, “
Development of a Radio Frequency Resonator for Monitoring Water Diffusion in Organic Coatings
,”
Sens. Actuators, A
,
247
, pp.
30
36
. 10.1016/j.sna.2016.05.024
11.
Zeng
,
L.
,
Shuang
,
S.
,
Guo
,
X. P.
, and
Zhang
,
G. A.
,
2016
, “
Erosion-Corrosion of Stainless Steel at Different Locations of a 90 deg Elbow
,”
Corros. Sci.
,
111
, pp.
72
83
. 10.1016/j.corsci.2016.05.004
12.
Macedo
,
M. C. S. S.
,
Margarit-Mattos
,
I. C. P.
,
Fragata
,
F. L.
,
Jorcin
,
J. B.
,
Pébère
,
N.
, and
Mattos
,
O. R.
,
2009
, “
Contribution to a Better Understanding of Different Behaviour Patterns Observed With Organic Coatings Evaluated by Electrochemical Impedance Spectroscopy
,”
Corros. Sci.
,
51
(
6
), pp.
1322
1327
. 10.1016/j.corsci.2009.03.016
13.
Mills
,
D. J.
, and
Jamali
,
S. S.
,
2017
, “
The Best Tests for Anti-corrosive Paints and Why: A Personal Viewpoint
,”
Prog. Org. Coat.
,
102
(
Part A
), pp.
8
17
.
14.
Sykes
,
J. M.
, and
Xu
,
Y.
,
2012
, “
Electrochemical Studies of Galvanic Action Beneath Organic Coatings
,”
Prog. Org. Coat.
,
74
(
2
), pp.
320
325
. 10.1016/j.porgcoat.2012.01.009
15.
Fu
,
D.
,
Xu
,
B.
,
Zhang
,
W.
, and
Li
,
Q.
,
2007
, “
Research Progress in Blistering Micro-mechanisms of Organic Coating
,”
J. Mater. Prot.
,
40
(
2
), pp.
42
45
.
16.
Lyon
,
S. B.
,
Bingham
,
R.
, and
Mills
,
D. J.
,
2016
, “
Advances in Corrosion Protection by Organic Coatings: What We Know and What We Would Like to Know
,”
Prog. Org. Coat.
,
102
(
Part A
), pp.
2
7
. 10.1016/j.porgcoat.2016.04.030
17.
Nguyen
,
T.
,
1996
, “
Unified Model for the Degradation of Organic Coatings on Steel in a Neutral Electrolyte
,”
J. Coat. Tech.
,
68
(
855
), pp.
45
56
.
18.
ASTM G34-01
,
2013
,
Standard Test Method for Exfoliation Corrosion Susceptibility in 2XXX and 7XXX Series Aluminum Alloys (EXCO Test)
,
American Society for Testing and Material
,
West Conshohocken, PA
.
19.
Romano
,
A. P.
,
Fedel
,
M.
,
Deflorian
,
F.
, and
Olivier
,
M. G.
,
2011
, “
Silane Sol–Gel Film as Pretreatment for Improvement of Barrier Properties and Filiform Corrosion Resistance of 6016 Aluminium Alloy Covered by Cataphoretic Coating
,”
Prog. Org. Coat.
,
72
(
4
), pp.
695
702
. 10.1016/j.porgcoat.2011.07.012
20.
Jeon
,
H. R.
,
Park
,
J. H.
, and
Shon
,
M. Y.
,
2013
, “
Corrosion Protection by Epoxy Coating Containing Multi-Walled Carbon Nanotubes
,”
J. Ind. Eng. Chem.
,
19
(
3
), pp.
849
853
. 10.1016/j.jiec.2012.10.030
21.
Fürbeth
,
W.
, and
Stratmann
,
M.
,
2001
, “
The Delamination of Polymeric Coatings From Electrogalvanized Steel—A Mechanistic Approach. Part 2: Delamination From a Defect Down to Steel
,”
Corros. Sci.
,
43
(
2
), pp.
207
227
. 10.1016/S0010-938X(00)00047-0
22.
Liu
,
X.
,
Xiong
,
J.
,
Lv
,
Y.
, and
Zuo
,
Y.
,
2009
, “
Study on Corrosion Electrochemical Behavior of Several Different Coating Systems by EIS
,”
Prog. Org. Coat.
,
64
(
4
), pp.
497
503
. 10.1016/j.porgcoat.2008.08.012
23.
Zucchi
,
F.
,
Grassi
,
V.
,
Frignani
,
A.
, and
Trabanelli
,
G.
,
2004
, “
Inhibition of Copper Corrosion by Silane Coatings
,”
Corros. Sci.
,
46
(
11
), pp.
2853
2865
. 10.1016/j.corsci.2004.03.019
24.
Zhang
,
Y.
,
Kong
,
D.
,
Feng
,
A.
,
Lu
,
J.
,
Zhang
,
L.
, and
Ge
,
T.
,
2006
, “
Study on the Determination of Interfacial Binding Strength of Coatings (I): Theoretical Analysis of Stress in Thin Film Binding Interface
,”
Acta Phys. Sin.
,
55
(
6
), pp.
2897
2900
. 10.7498/aps.55.2897
25.
Harlow
,
D. G.
,
2012
, “
Constituent Particle Clustering and Pitting Corrosion
,”
Metall. Mater. Trans. A
,
43
(
8
), pp.
2832
2838
. 10.1007/s11661-011-0778-9
26.
Harlow
,
D. G.
, and
Wei
,
R. P.
,
1998
, “
A Probability Model for the Growth of Corrosion Pits in Aluminum Alloys Induced by Constituent Particles
,”
Eng. Fract. Mech.
,
59
(
3
), pp.
305
325
. 10.1016/S0013-7944(97)00127-6
You do not currently have access to this content.