Abstract

In the present work, the microstructure deformation and synergetic damage evolution of a three-dimensional textile SiC/SiC ceramic-matrix composite under flexural loading are investigated by in situ digital image correlation at ambient temperatures. The correlations between microstructure evolution and macro-mechanical degradation of 3D textile composites under flexural loading are established based on the experimental results. In addition, by establishing continuum damage mechanics and a thermodynamic framework with synergetic effects of microstructures, a flexural loading-induced damage evolution model is developed to reveal the relationship between the energy release rate and elastic modulus degradation. The proposed model can be used to predict the flexural stress–strain curves of 3D textile SiC/SiC composites to further improve the design and assessment of new textile architectures with specific mechanical properties.

References

1.
Padture
,
N. P.
,
2016
, “
Advanced Structural Ceramics in Aerospace Propulsion
,”
Nat. Mater.
,
15
(
8
), pp.
804
809
.
2.
Almansour
,
A. S.
, and
Morscher
,
G. N.
,
2020
, “
Tensile Creep Behavior of SiCF/SiC Ceramic Matrix Minicomposites
,”
J. Eur. Ceram. Soc.
,
40
(
15
), pp.
5132
5146
.
3.
Delage
,
J.
,
Saiz
,
E.
, and
Al Nasiri
,
N.
,
2022
, “
Fracture Behaviour of SiC/SiC Ceramic Matrix Composite at Room Temperature
,”
J. Eur. Ceram. Soc.
,
42
(
7
), pp.
3156
3167
.
4.
Yang
,
Z.
,
Yuan
,
H.
, and
Liu
,
H.
,
2019
, “
Evolution and Characterization of Cyclic Thermal Shock-Induced Thermomechanical Damage in Oxide/Oxide Ceramics Matrix Composites
,”
Int. J. Fatigue
,
120
, pp.
150
161
.
5.
Dai
,
S.
,
Cunningham
,
P. R.
,
Marshall
,
S.
, and
Silva
,
C.
,
2015
, “
Influence of Fibre Architecture on the Tensile, Compressive and Flexural Behaviour of 3D Woven Composites
,”
Composites Part A: Appl. Sci. Manuf.
,
69
, pp.
195
207
.
6.
Santhosh
,
U.
,
Ahmad
,
J.
,
Ojard
,
G.
, and
Gowayed
,
Y.
,
2021
, “
A Synergistic Model of Stress and Oxidation Induced Damage and Failure in Silicon Carbide-Based Ceramic Matrix Composites
,”
J. Am. Ceram. Soc.
,
104
(
8
), pp.
4163
4182
.
7.
Gale
,
L.
,
Harris
,
S.
,
Pattison
,
S.
,
Baker
,
J.
, and
Fowler
,
J.
,
2021
, “
Development and Evaluation of Sub-element Testing of SiC/SiC Ceramic Matrix Composites at Elevated Temperatures
,”
J. Eur. Ceram. Soc.
,
41
(
5
), pp.
3167
3176
.
8.
Alabdullah
,
M.
, and
Ghoniem
,
N. M.
,
2019
, “
Damage Mechanics Modeling of the Non-linear Behavior of SiC/SiC Ceramic Matrix Composite Fuel Cladding
,”
J. Nucl. Mater.
,
524
, pp.
296
311
.
9.
Chen
,
Y.
,
Gélébart
,
L.
,
Chateau
,
C.
,
Bornert
,
M.
,
Sauder
,
C.
, and
King
,
A.
,
2019
, “
Analysis of the Damage Initiation in a SiC/SiC Composite Tube From a Direct Comparison Between Large-Scale Numerical Simulation and Synchrotron X-Ray Micro-computed Tomography
,”
Int. J. Solids Struct.
,
161
, pp.
111
126
.
10.
Poerschke
,
D. L.
,
Rossol
,
M. N.
, and
Zok
,
F. W.
,
2017
, “
Intermediate Temperature Oxidative Strength Degradation of a SiC/SiNC Composite With a Polymer-Derived Matrix
,”
J. Am. Ceram. Soc.
,
100
(
4
), pp.
1606
1617
.
11.
Song
,
C.
,
Liu
,
Y.
,
Ye
,
F.
,
Cheng
,
L.
,
Zhang
,
P.
, and
Chai
,
N.
,
2021
, “
Enhanced Mechanical Property and Tunable Dielectric Property of SiCf/SiC-SiBCN Composites by CVI Combined With PIP
,”
J. Adv. Ceram.
,
10
(
4
), pp.
758
767
.
12.
Yang
,
Z.
,
Sun
,
J.
,
Yang
,
J.
,
Liu
,
T.
, and
Liu
,
H.
,
2022
, “
Mechanical Behavior of Woven CMCs Under Non-uniform Stress and Strain Fields
,”
Compos. Struct.
,
299
, p.
116097
.
13.
Callaway
,
E. B.
, and
Zok
,
F. W.
,
2020
, “
Tensile Response of Unidirectional Ceramic Minicomposites
,”
J. Mech. Phys. Solids
,
138
, p.
103903
.
14.
Swaminathan
,
B.
,
McCarthy
,
N. R.
,
Almansour
,
A. S.
,
Sevener
,
K.
,
Pollock
,
T. M.
,
Kiser
,
J. D.
, and
Daly
,
S.
,
2021
, “
Microscale Characterization of Damage Accumulation in CMCs
,”
J. Eur. Ceram. Soc.
,
41
(
5
), pp.
3082
3093
.
15.
Morscher
,
G. N.
,
2010
, “
Tensile Creep and Rupture of 2D-Woven SiC/SiC Composites for High Temperature Applications
,”
J. Eur. Ceram. Soc.
,
30
(
11
), pp.
2209
2221
.
16.
Mazars
,
V.
,
Caty
,
O.
,
Couegnat
,
G.
,
Bouterf
,
A.
,
Roux
,
S.
,
Denneulin
,
S.
,
Pailhes
,
J.
, and
Vignoles
,
G. L.
,
2017
, “
Damage Investigation and Modeling of 3D Woven Ceramic Matrix Composites From X-Ray Tomography In-Situ Tensile Tests
,”
Acta Mater.
,
140
, pp.
130
139
.
17.
Hilmas
,
A. M.
,
Sevener
,
K. M.
, and
Halloran
,
J. W.
,
2020
, “
Damage Evolution in SiC/SiC Unidirectional Composites by X-Ray Tomography
,”
J. Am. Ceram. Soc.
,
103
(
5
), pp.
3436
3447
.
18.
Zhang
,
D.
,
Liu
,
Y.
,
Liu
,
H.
,
Feng
,
Y.
,
Guo
,
H.
,
Hong
,
Z.
,
Chen
,
C.
, and
Zhang
,
Y.
,
2021
, “
Characterisation of Damage Evolution in Plain Weave SiC/SiC Composites Using In Situ X-Ray Micro-computed Tomography
,”
Compos. Struct.
,
275
, p.
114447
.
19.
Rajan
,
V. P.
, and
Zok
,
F. W.
,
2012
, “
Effects of Non-uniform Strains on Tensile Fracture of Fiber-Reinforced Ceramic Composites
,”
J. Mech. Phys. Solids
,
60
(
12
), pp.
2003
2018
.
20.
Rajan
,
V. P.
, and
Zok
,
F. W.
,
2014
, “
Matrix Cracking of Fiber-Reinforced Ceramic Composites in Shear
,”
J. Mech. Phys. Solids
,
73
, pp.
3
21
.
21.
Hild
,
F.
,
Domergue
,
J.
,
Leckie
,
F. A.
, and
Evans
,
A. G.
,
1994
, “
Tensile and Flexural Ultimate Strength of Fiber-Reinforced Ceramic-Matrix Composites
,”
Int. J. Solids Struct.
,
31
(
7
), pp.
1035
1045
.
22.
McNulty
,
J. C.
, and
Zok
,
F. W.
,
1997
, “
Application of Weakest-Link Fracture Statistics to Fiber-Reinforced Ceramic-Matrix Composites
,”
J. Am. Ceram. Soc.
,
80
(
6
), pp.
1535
1543
.
23.
Zhang
,
D.
,
Waas
,
A. M.
, and
Yen
,
C.
,
2015a
, “
Progressive Damage and Failure Response of Hybrid 3D Textile Composites Subjected to Flexural Loading, Part I: Experimental Studies
,”
Int. J. Solids Struct.
,
75–76
, pp.
309
320
.
24.
Zhang
,
D.
,
Waas
,
A. M.
, and
Yen
,
C.
,
2015b
, “
Progressive Damage and Failure Response of Hybrid 3D Textile Composites Subjected to Flexural Loading, Part II: Mechanics Based Multiscale Computational Modeling of Progressive Damage and Failure
,”
Int. J. Solids Struct.
,
75–76
, pp.
321
335
.
25.
Yang
,
Y.
,
Liu
,
X.
,
Wang
,
Y.
,
Gao
,
H.
,
Li
,
R.
, and
Bao
,
Y.
,
2017
, “
A Progressive Damage Model for Predicting Damage Evolution of Laminated Composites Subjected to Three-Point Bending
,”
Compos. Sci. Technol.
,
151
, pp.
85
93
.
26.
Chao
,
X.
,
Qi
,
L.
,
Tian
,
W.
,
Hou
,
X.
,
Ma
,
W.
, and
Li
,
H.
,
2018
, “
Numerical Evaluation of the Influence of Porosity on Bending Properties of 2D Carbon/Carbon Composites
,”
Compos. Part B Eng.
,
136
, pp.
72
80
.
27.
Wan
,
F.
,
Liu
,
R.
,
Wang
,
Y.
,
Cao
,
Y.
,
Zhang
,
C.
, and
Marrow
,
T. J.
,
2019
, “
Damage Development During Flexural Loading of a 5-Directional Braided C/C-SiC Composite, Characterized by X-Ray Tomography and Digital Volume Correlation
,”
Ceram. Int.
,
45
(
5
), pp.
5601
5612
.
28.
Pirzada
,
T. J.
,
Liu
,
D.
,
Ell
,
J.
,
Barnard
,
H.
,
Ŝulák
,
I.
,
Galano
,
M.
,
Marrow
,
T. J.
, and
Ritchie
,
R. O.
,
2021
, “
In Situ Observation of the Deformation and Fracture of an Alumina-Alumina Ceramic-Matrix Composite at Elevated Temperature Using X-Ray Computed Tomography
,”
J. Eur. Ceram. Soc.
,
41
(
7
), pp.
4217
4230
.
29.
Liu
,
C.
,
Chen
,
Y.
,
Shi
,
D.
,
Marrow
,
J.
,
Jing
,
X.
, and
Yang
,
X.
,
2021
, “
In Situ Investigation of Failure in 3D Braided SiCf/SiC Composites Under Flexural Loading
,”
Compos. Struct.
,
270
, p.
114067
.
30.
Rajan
,
V. P.
,
Rossol
,
M. N.
, and
Zok
,
F. W.
,
2012
, “
Optimization of Digital Image Correlation for High-Resolution Strain Mapping of Ceramic Composites
,”
Exp. Mech.
,
52
(
9
), pp.
1407
1421
.
31.
Gonabadi
,
H.
,
Oila
,
A.
,
Yadav
,
A.
, and
Bull
,
S.
,
2021
, “
Structural Performance of Composite Tidal Turbine Blades
,”
Compos. Struct.
,
278
, p.
114679
.
32.
Gonabadi
,
H.
,
Oila
,
A.
,
Yadav
,
A.
, and
Bull
,
S.
,
2021
, “
Fatigue Damage Analysis of GFRP Composites Using Digital Image Correlation
,”
J. Ocean Eng. Mar. Energy
,
7
(
1
), pp.
25
40
.
33.
Gonabadi
,
H.
,
Oila
,
A.
,
Yadav
,
A.
, and
Bull
,
S.
,
2021
, “
Investigation of Anisotropy Effects in Glass Fibre Reinforced Polymer Composites on Tensile and Shear Properties Using Full Field Strain Measurement and Finite Element Multi-scale Techniques
,”
J. Compos. Mater.
,
56
(
3
), pp.
507
524
.
34.
Bumgardner
,
C. H.
,
Heim
,
F. M.
,
Roache
,
D. C.
,
Price
,
M. C.
,
Deck
,
C. P.
, and
Li
,
X.
,
2021
, “
Characterizing Environment-Dependent Fracture Mechanisms of Ceramic Matrix Composites Via Digital Image Correlation
,”
J. Am. Ceram. Soc.
,
104
(
12
), pp.
6545
6562
.
35.
Yang
,
H.
,
Zhou
,
X.
,
Yu
,
J.
,
Wang
,
H.
, and
Huang
,
Z.
,
2015
, “
Microwave and Conventional Sintering of SiC/SiC Composites: Flexural Properties and Microstructures
,”
Ceram. Int.
,
41
(
9
), pp.
11651
11654
.
36.
ASTM C1341-13
,
2013
, “
Standard Test Method for Flexural Properties of Continuous Fiber-Reinforced Advanced Ceramic Composites
,”
ASTM International
.
37.
Marshall
,
D. B.
, and
Evans
,
A. G.
,
1985
, “
Failure Mechanisms in Ceramic-Fiber/Ceramic-Matrix Composites
,”
J. Am. Ceram. Soc.
,
68
(
5
), pp.
225
231
.
38.
Beyerle
,
D. S.
,
Spearing
,
S. M.
, and
Evans
,
A. G.
,
1992
, “
Damage Mechanisms and the Mechanical Properties of a Laminated 0/90 Ceramic/Matrix Composite
,”
J. Am. Ceram. Soc.
,
75
(
12
), pp.
3321
3330
.
39.
Eugster
,
S. R.
,
2015
,
Geometric Continuum Mechanics and Induced Beam Theories
, Lecture Notes in Applied and Computational Mechanics,
Springer International Publishing
,
Cham
.
40.
Lemaitre
,
J.
, and
Desmorat
,
R.
,
2005
,
Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures
,
Springer-Verlag
,
Berlin
.
41.
Chateau
,
C.
,
Gelebart
,
L.
,
Bornert
,
M.
,
Crepin
,
J.
,
Caldemaison
,
D.
, and
Sauder
,
C.
,
2014
, “
Modeling of Damage in Unidirectional Ceramic Matrix Composites and Multi-scale Experimental Validation on Third Generation SiC/SiC Minicomposites
,”
J. Mech. Phys. Solids
,
63
, pp.
298
319
.
42.
Marcin
,
L.
,
Maire
,
J.
,
Carrère
,
N.
, and
Martin
,
E.
,
2010
, “
Development of a Macroscopic Damage Model for Woven Ceramic Matrix Composites
,”
Int. J. Damage Mech.
,
20
(
6
), pp.
939
957
.
43.
Shojaei
,
A.
,
Li
,
G. Q.
,
Fish
,
J.
, and
Lan
,
P. J.
,
2014
, “
Multi-scale Constitutive Modeling of Ceramic Matrix Composites by Continuum Damage Mechanics
,”
Int. J. Solids Struct.
,
51
(
23–24
), pp.
4068
4081
.
44.
Oddy
,
C.
,
Ekh
,
M.
, and
Fagerström
,
M.
,
2022
, “
Macroscale Modelling of 3d-Woven Composites: Elasto-plasticity and Progressive Damage
,”
Int. J. Solids Struct.
,
250
, p.
111696
.
45.
Cicekli
,
U.
,
Voyiadjis
,
G. Z.
, and
Abu Al-Rub
,
R. K.
,
2007
, “
A Plasticity and Anisotropic Damage Model for Plain Concrete
,”
Int. J. Plast.
,
23
(
10
), pp.
1874
1900
.
You do not currently have access to this content.