Abstract

The Co-based superalloy Mar M 509, known for its high-temperature oxidation and hot corrosion resistance, is processed via laser powder bed fusion (LPBF). Microstructure and mechanical properties of Mar M 509 in as-printed (As-P) and heat-treated (HT) states are compared based on two build orientations (longitudinal (L) and transverse (T)) to establish structure-property links with heat treatment. The As-P condition displays a distinct cellular microstructure (500–600 nm) with 50–60 nm carbide particles adorning cell boundaries. Longitudinal (L) build has columnar grains (8–35 μm along the major axis) with a grain aspect ratio of 4, while transverse (T) orientation exhibits equiaxed, bimodal microstructure (5–10 μm and 15–25 μm grain sizes). Strong <001> texture is noted in L. Mechanical properties at room temperature differ between L and T; T (569 ± 12 HV) has 15% higher hardness compared to L (489 ± 18 HV) and 34% higher 0.2% yield strength (YS), but 30% lower elongation than L. Post a short heat treatment cycle at 1250 °C, weld bead structure and cell boundaries break down. Both L (25–33 μm along the major axis) and T orientations (5–42 μm) experience grain growth, and carbides coarsen (250–350 nm). Post-heat treatment, dislocation density decreases, indicating recrystallization; lattice parameter of matrix reduces, implying solute depletion contributing to carbide enrichment. Yield strength drops from 860 MPa to 740 MPa in L and from 1150 MPa to 840 MPa in T, with ductility rising from 14% to 23% in L.

References

1.
Wei
,
W.
,
Xiao
,
J. C.
,
Wang
,
C. F.
,
Cheng
,
Q.
,
Guo
,
F. J.
,
He
,
Q.
,
Wang
,
M. S.
,
Jiang
,
S. Z.
, and
Huang
,
C. X.
,
2022
, “
Hierarchical Microstructure and Enhanced Mechanical Properties of SLM-Fabricated GH5188 Co-Superalloy
,”
Mater. Sci. Eng. A
,
831
.
2.
Beltran
,
A. M.
,
Sims
,
C. T.
, and
Wagenheim
,
N. T.
,
1969
, “
High Temperature Properties of Mar-M Alloy 509
,”
J. Met.
,
21
(
9
), pp.
39
47
.
3.
Szala
,
J.
,
Szczotok
,
A.
,
Richter
,
J.
,
Cwajna
,
J.
, and
Maciejny
,
A.
,
2006
, “
Selection of Methods for Etching Carbides in MAR-M509 Cobalt-Base Superalloy and Acquisition of Their Images
,”
Mater. Charact.
,
56
(
4–5
), pp.
325
335
.
4.
Drapier
,
J. M.
,
Leroy
,
V.
,
Dupont
,
C.
,
Coutsouradis
,
D.
, and
Habraken
,
L.
,
1968
, “
Structural Stability of Mar-M-509—A Cobalt-Base Superalloy
,”
International Symposium on Structural Stability in Superalloys (1968)
,
Champion, PA
.
5.
Ferreri
,
N. C.
,
Ghorbanpour
,
S.
,
Bhowmik
,
S.
,
Lussier
,
R.
,
Bicknell
,
J.
,
Patterson
,
B. M.
, and
Knezevic
,
M.
,
2019
, “
Effects of Build Orientation and Heat Treatment on the Evolution of Microstructure and Mechanical Properties of Alloy Mar-M-509 Fabricated Via Laser Powder Bed Fusion
,”
Int. J. Plast.
,
121
, pp.
116
133
.
6.
Davis
,
J. R.
,
2000
,
Nickel, Cobalt, and Their Alloys
,
ASM International
,
Novelty, OH
.
7.
Murr
,
L. E.
,
Martinez
,
E.
,
Amato
,
K. N.
,
Gaytan
,
S. M.
,
Hernandez
,
J.
,
Ramirez
,
D. A.
,
Shindo
,
P. W.
,
Medina
,
F.
, and
Wicker
,
R. B.
,
2012
, “
Fabrication of Metal and Alloy Components by Additive Manufacturing: Examples of 3D Materials Science
,”
J. Mater. Res. Technol.
,
1
(
1
), pp.
42
54
.
8.
Wang
,
X.
,
Chen
,
C.
,
Zhao
,
R.
,
Liu
,
L.
,
Shuai
,
S.
,
Hu
,
T.
,
Wang
,
J.
, and
Ren
,
Z.
,
2022
, “
Selective Laser Melting of Carbon-Free Mar-M509 Co-Based Superalloy: Microstructure, Micro-Cracks, and Mechanical Anisotropy
,”
Acta Metall. Sin. (Engl. Lett.)
,
35
(
3
), pp.
501
516
.
9.
Bawane
,
K. K.
,
Srinivasan
,
D.
, and
Banerjee
,
D.
,
2018
, “
Microstructural Evolution and Mechanical Properties of Direct Metal Laser-Sintered (DMLS) CoCrMo After Heat Treatment
,”
Metall. Mater. Trans. A
,
49
(
9
), pp.
3793
3811
.
10.
Demir
,
A. G.
, and
Previtali
,
B.
,
2017
, “
Additive Manufacturing of Cardiovascular CoCr Stents by Selective Laser Melting
,”
Mater. Des.
,
119
, pp.
338
350
.
11.
Finazzi
,
V.
,
Demir
,
A. G.
,
Biffi
,
C. A.
,
Migliavacca
,
F.
,
Petrini
,
L.
, and
Previtali
,
B.
,
2020
, “
Design and Functional Testing of a Novel Balloon-Expandable Cardiovascular Stent in CoCr Alloy Produced by Selective Laser Melting
,”
J. Manuf. Process.
,
55
, pp.
161
173
.
12.
Kim
,
K.-S.
,
Hwang
,
J.-W.
, and
Lee
,
K.-A.
,
2020
, “
Effect of Building Direction on the Mechanical Anisotropy of Biocompatible Co–Cr–Mo Alloy Manufactured by Selective Laser Melting Process
,”
J. Alloys Compd.
,
834
, p.
155055
.
13.
Chen
,
Z. W.
,
Phan
,
M. A. L.
, and
Darvish
,
K.
,
2017
, “
Grain Growth During Selective Laser Melting of a Co–Cr–Mo Alloy
,”
J. Mater. Sci.
,
52
(
12
), pp.
7415
7427
.
14.
Cloots
,
M.
,
Kunze
,
K.
,
Uggowitzer
,
P. J.
, and
Wegener
,
K.
,
2016
, “
Microstructural Characteristics of the Nickel-Based Alloy IN738LC and the Cobalt-Based Alloy Mar-M509 Produced by Selective Laser Melting
,”
Mater. Sci. Eng.: A
,
658
, pp.
68
76
.
15.
Srinivasan
,
D.
, and
Ananth
,
K.
,
2022
, “
Recent Advances in Alloy Development for Metal Additive Manufacturing in Gas Turbine/Aerospace Applications: A Review
,”
J. Indian Inst. Sci.
, pp.
1
39
.
You do not currently have access to this content.