Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The current research assesses the consequences of various damages (crack and delamination) and high strain loading conditions on the fiber-reinforced composite structure's elasto-plastic stress–strain (EPSS) characteristics. The constitutive responses are obtained numerically (finite element discretization) using higher-order polynomials with the help of the matlab platform. The EPSS responses are evaluated via the modified Ludwik equation and Cowper Symonds model under high strain rate loadings. The model accuracy has been tested by comparing the present numerical and the published experimental data available in the open domain. Furthermore, various numerical examples present the effect of damages (debond and/or crack), forces, and stress–strain characteristics for a wide range of strain rates (ranging from 0.001 s−1 to 50 s−1). The stochastic constitutive model is obtained to show the importance of modeling and the corresponding analysis parameters, including uncertainty quantification. Finally, a detailed understanding of the damages and geometries on the polymeric composite structure are enumerated via the delve model for the futuristic design.

References

1.
Kaw
,
A. K.
,
2006
,
Mechanics of Composite Materials
,
CRC Press
,
Boca Raton, FL
.
2.
Paipetis
,
A.
,
Katerelos
,
D. T. G.
,
Andersson
,
C.
,
Huang
,
Z. M.
, and
Zhou
,
Y.-X.
,
2009
,
Composite Laminates: Properties, Performance and Applications
,
Nova Science Pub Inc.
,
New York
.
3.
Elanchezhian
,
C.
,
Ramnath
,
B. V.
, and
Hemalatha
,
J.
,
2014
, “
Mechanical Behavior of Glass and Carbon Fibre Reinforced Composites at Varying Strain Rates and Temperatures
,”
Proc. Mater. Sci.
,
6
, pp.
1405
1418
.
4.
Kumar
,
A.
,
Chouhan
,
H.
, and
Bhatnagar
,
N.
,
2020
, “
High Strain Rate Compression Testing of Intra-Ply and Inter-Ply Hybrid Thermoplastic Composites Reinforced With Kevlar/Basalt Fibers
,”
Polym. Test.
,
84
, p.
106407
.
5.
Naik
,
N. K.
,
Yernamma
,
P.
,
Thoram
,
N. M.
,
Gadipatri
,
R.
, and
Kavala
,
V. R.
,
2010
, “
High Strain Rate Tensile Behavior of Woven Fabric E-Glass/Epoxy Composite
,”
Polym. Test.
,
29
(
1
), pp.
14
22
.
6.
Kapoor
,
R.
,
Pangeni
,
L.
,
Bandaru
,
A. K.
,
Ahmad
,
S.
, and
Bhatnagar
,
N.
,
2016
, “
High Strain Rate Compression Response of Woven Kevlar Reinforced Polypropylene Composites
,”
Compos. Part B: Eng.
,
89
, pp.
374
382
.
7.
Weng
,
F.
,
Fang
,
Y.
,
Ren
,
M.
,
Sun
,
J.
, and
Feng
,
L.
,
2021
, “
Effect of High Strain Rate on Shear Properties of Carbon Fiber Reinforced Composites
,”
Compos. Sci. Technol.
,
203
, p.
108599
.
8.
Arbaoui
,
J.
,
Tarfaoui
,
M.
, and
El Malki Alaoui
,
A.
,
2016
, “
Dynamical Characterisation and Damage Mechanisms of E-Glass/Vinylester Woven Composites at High Strain Rates Compression
,”
J. Compos. Mater.
,
50
(
24
), pp.
3313
3323
.
9.
Gowtham
,
H. L.
,
Pothnis
,
J. R.
,
Ravikumar
,
G.
, and
Naik
,
N. K.
,
2013
, “
High Strain Rate In-Plane Shear Behavior of Composites
,”
Polym. Test.
,
32
(
8
), pp.
1334
1341
.
10.
Foroutan
,
R.
,
Nemes
,
J.
,
Ghiasi
,
H.
, and
Hubert
,
P.
,
2013
, “
Experimental Investigation of High Strain-Rate Behavior of Fabric Composites
,”
Compos. Struct.
,
106
, pp.
264
269
.
11.
Jenq
,
S. T.
, and
Sheu
,
S. L.
,
1993
, “
High Strain Rate Compressional Behavior of Stitched and Unstitched Composite Laminates With Radial Constraint
,”
Compos. Struct.
,
25
(
1–4
), pp.
427
438
.
12.
Kwon
,
J.
,
Choi
,
J.
,
Huh
,
H.
, and
Lee
,
J.
,
2017
, “
Evaluation of the Effect of the Strain Rate on the Tensile Properties of Carbon–Epoxy Composite Laminates
,”
J. Compos. Mater.
,
51
(
22
), pp.
3197
3210
.
13.
Brown
,
K. A.
,
Brooks
,
R.
, and
Warrior
,
N. A.
,
2010
, “
The Static and High Strain Rate Behavior of a Commingled E-Glass/Polypropylene Woven Fabric Composite
,”
Compos. Sci. Technol.
,
70
(
2
), pp.
272
283
.
14.
Nachtane
,
M.
,
Tarfaoui
,
M.
,
Sassi
,
S.
,
El Moumen
,
A.
, and
Saifaoui
,
D.
,
2019
, “
An Investigation of Hygrothermal Aging Effects on High Strain Rate Behavior of Adhesively Bonded Composite Joints
,”
Compos. Part B: Eng.
,
172
, pp.
111
120
.
15.
Zhang
,
Z.
,
Hou
,
S.
,
Mao
,
Y.
,
He
,
L.
, and
Han
,
X.
,
2020
, “
Rate-Related Study on the Ply Orientation of Carbon Fiber Reinforced Epoxy Composite Laminates
,”
Int. J. Mech. Sci.
,
188
, p.
July
.
16.
Fotouhi
,
M.
,
Fuller
,
J.
,
Longana
,
M.
,
Jalalvand
,
M.
, and
Wisnom
,
M. R.
,
2019
, “
The High Strain Rate Tension Behavior of Pseudo-Ductile High Performance Thin Ply Composites
,”
Compos. Struct.
,
215
, pp.
365
376
.
17.
Tarfaoui
,
M.
,
Choukri
,
S.
, and
Neme
,
A.
,
2008
, “
Effect of Fibre Orientation on Mechanical Properties of the Laminated Polymer Composites Subjected to Out-of-Plane High Strain Rate Compressive Loadings
,”
Compos. Sci. Technol.
,
68
(
2
), pp.
477
485
.
18.
Jindal
,
P.
,
Pande
,
S.
,
Sharma
,
P.
,
Mangla
,
V.
,
Chaudhury
,
A.
,
Patel
,
D.
,
Singh
,
B. P.
,
Mathur
,
R. B.
, and
Goyal
,
M.
,
2013
, “
High Strain Rate Behavior of Multi-Walled Carbon Nanotubes-Polycarbonate Composites
,”
Compos. Part B: Eng.
,
45
(
1
), pp.
417
422
.
19.
Arbaoui
,
J.
,
Tarfaoui
,
M.
, and
El Malki Alaoui
,
A.
,
2016
, “
Mechanical Behavior and Damage Kinetics of Woven E-Glass/Vinylester Laminate Composites Under High Strain Rate Dynamic Compressive Loading: Experimental and Numerical Investigation
,”
Int. J. Impact Eng.
,
87
, pp.
44
54
.
20.
Al-mosawe
,
A.
,
Al-mahaidi
,
R.
, and
Zhao
,
X.
,
2017
, “
Engineering Properties of CFRP Laminate Under High Strain Rates
,”
Compos. Struct.
,
180
, pp.
9
15
.
21.
Hosur
,
M. V.
,
Alexander
,
J.
,
Jeelani
,
S.
,
Vaidya
,
U. K.
, and
Mayer
,
A.
,
2003
, “
High Strain Compression Response of Affordable Woven Carbon/Epoxy Composites
,”
J. Reinf. Plast. Compos.
,
22
(
3
), pp.
271
296
.
22.
Koerber
,
H.
, and
Camanho
,
P. P.
,
2011
, “
High Strain Rate Characterisation of Unidirectional Carbon-Epoxy IM7-8552 in Longitudinal Compression
,”
Compos. Part A: Appl. Sci. Manuf.
,
42
(
5
), pp.
462
470
.
23.
Daniel
,
I. M.
, and
Hsiao
,
H. M.
,
1999
, “
Effects of Fiber Waviness on the High-Strain-Rate Behavior of Composites
,”
J. Thermo. Compos. Mat.
,
12
(
5
), pp.
412
422
.
24.
Reis
,
V. L.
,
Opelt
,
C. V.
,
Cândido
,
G. M.
,
Rezende
,
M. C.
, and
Donadon
,
M. V.
,
2018
, “
Effect of Fiber Orientation on the Compressive Response of Plain Weave Carbon Fiber/Epoxy Composites Submitted to High Strain Rates
,”
Compos. Struct.
,
203
, pp.
952
959
.
25.
Fitoussi
,
J.
,
Meraghni
,
F.
,
Jendli
,
Z.
,
Hug
,
G.
, and
Baptiste
,
D.
,
2005
, “
Experimental Methodology for High Strain-Rates Tensile Behavior Analysis of Polymer Matrix Composites
,”
Compos. Sci. Technol.
,
65
(
14
), pp.
2174
2188
.
26.
Thiruppukuzhi
,
S. V.
, and
Sun
,
C. T.
,
1998
, “
Testing and Modeling High Strain Rate Behavior of Polymeric Composites
,”
8368
(
98
), pp.
535
546
.
27.
Shubham
,
Sekher
,
C.
,
Sumant
,
C.
,
Kumar
,
R.
, and
Ray
,
C.
,
2022
, “
Finite Element Modelling and Experimentation of Plain Weave Glass/Epoxy Composites Under High Strain-Rate Compression Loading for Estimation of Johnson-Cook Model Parameters
,”
Int. J. Impact Eng.
,
167
, p.
104262
.
28.
Woo
,
S. C.
, and
Kim
,
T. W.
,
2016
, “
High Strain-Rate Failure in Carbon/Kevlar Hybrid Woven Composites Via a Novel SHPB-AE Coupled Test
,”
Compos. Part B: Eng.
,
97
, pp.
317
328
.
29.
Zhang
,
J.
,
Hu
,
M.
,
Liu
,
S.
,
Wang
,
L.
,
Gu
,
B.
, and
Sun
,
B.
,
2019
, “
High Strain Rate Compressive Behaviors and Adiabatic Shear Band Localization of 3-D Carbon/Epoxy Angle-Interlock Woven Composites at Different Loading Directions
,”
Compos. Struct.
,
211
, pp.
502
521
.
30.
Kiani
,
Y.
,
2020
, “
NURBS-Based Thermal Buckling Analysis of Graphene Platelet Reinforced Composite Laminated Skew Plates
,”
J. Therm. Stress.
,
43
(
1
), pp.
90
108
.
31.
Farokhi
,
H.
,
Xia
,
Y.
, and
Erturk
,
A.
,
2022
, “
Experimentally Validated Geometrically Exact Model for Extreme Nonlinear Motions of Cantilevers
,”
Nonlinear Dyn.
,
107
(
1
), pp.
457
475
.
32.
Asadi
,
H.
,
Bodaghi
,
M.
,
Shakeri
,
M.
, and
Aghdam
,
M. M.
,
2015
, “
Nonlinear Dynamics of SMA-Fiber-Reinforced Composite Beams Subjected to a Primary/Secondary-Resonance Excitation
,”
Acta Mech.
,
226
(
2
), pp.
437
455
.
33.
Duan
,
S.
,
Mo
,
F.
,
Yang
,
X.
,
Tao
,
Y.
,
Wu
,
D.
, and
Peng
,
Y.
,
2016
, “
Experimental and Numerical Investigations of Strain Rate Effects on Mechanical Properties of LGFRP Composite
,”
Compos. Part B: Eng.
,
88
, pp.
101
107
.
34.
Vu-Bac
,
N.
,
Rafiee
,
R.
,
Zhuang
,
X.
,
Lahmer
,
T.
, and
Rabczuk
,
T.
,
2015
, “
Uncertainty Quantification for Multiscale Modeling of Polymer Nanocomposites With Correlated Parameters
,”
Compos. Part B: Eng.
,
68
, pp.
446
464
.
35.
Vu-Bac
,
N.
,
Silani
,
M.
,
Lahmer
,
T.
,
Zhuang
,
X.
, and
Rabczuk
,
T.
,
2015
, “
A Unified Framework for Stochastic Predictions of Mechanical Properties of Polymeric Nanocomposites
,”
Comput. Mater. Sci.
,
96
(
Part B
), pp.
520
535
.
36.
Vu-Bac
,
N.
,
Lahmer
,
T.
,
Zhang
,
Y.
,
Zhuang
,
X.
, and
Rabczuk
,
T.
,
2014
, “
Stochastic Predictions of Interfacial Characteristic of Polymeric Nanocomposites (PNCs)
,”
Compos. Part B: Eng.
,
59
, pp.
80
95
.
37.
Vu-Bac
,
N.
,
Zhuang
,
X.
, and
Rabczuk
,
T.
,
2019
, “
Uncertainty Quantification for Mechanical Properties of Polyethylene Based on Fully Atomistic Model
,”
Materials
,
12
(
21
), p.
3613
.
38.
Vu-Bac
,
N.
,
Lahmer
,
T.
,
Zhuang
,
X.
,
Nguyen-Thoi
,
T.
, and
Rabczuk
,
T.
,
2016
, “
A Software Framework for Probabilistic Sensitivity Analysis for Computationally Expensive Models
,”
Adv. Eng. Softw.
,
100
, pp.
19
31
.
39.
Hamdia
,
K. M.
, and
Ghasemi
,
H.
,
2022
, “
Quantifying the Uncertainties in Modeling Soft Composites Via a Multiscale Approach
,”
Int. J. Solids Struct.
,
256
, p.
111959
.
40.
Hamdia
,
K. M.
,
Ghasemi
,
H.
,
Zhuang
,
X.
,
Alajlan
,
N.
, and
Rabczuk
,
T.
,
2018
, “
Sensitivity and Uncertainty Analysis for Flexoelectric Nanostructures
,”
Comput. Methods Appl. Mech. Eng.
,
337
, pp.
95
109
.
41.
Hirwani
,
C. K.
,
Patil
,
R. K.
,
Panda
,
S. K.
,
Mahapatra
,
S. S.
,
Mandal
,
S. K.
,
Srivastava
,
L.
, and
Buragohain
,
M. K.
,
2016
, “
Experimental and Numerical Analysis of Free Vibration of Delaminated Curved Panel
,”
Aerosp. Sci. Technol.
,
54
, pp.
353
370
.
42.
Singh
,
V. K.
, and
Panda
,
S. K.
,
2014
, “
Nonlinear Free Vibration Analysis of Single/Doubly Curved Composite Shallow Shell Panels
,”
Thin-Walled Struct.
,
85
, pp.
341
349
.
43.
Cook
,
R. D.
,
Malkus
,
D. S.
,
Plesha
,
M. E.
, and
Witt
,
R. J.
,
2009
,
Concepts and Applications of Finite Element Analysis
,
John Wiley & Sons
,
Danvers, MA
.
44.
Chakrabarty
,
J.
,
2012
,
Theory of Plasticity
,
Elsevier Science
,
Burlington, MA
.
You do not currently have access to this content.