This paper looks at the use of a Clifford (or geometric) algebra for handling both rotations and translations in Euclidean space. The algebra is constructed over the real numbers using four basis vectors. Three of these generate a subalgebra which models three-dimensional space; the fourth acts as a projective coordinate. Spatial displacements are represented by bivectors of a certain form. The application to the generation of smooth motions using Be´zier and B-spline techniques is illustrated.

1.
Ro¨schel
,
O.
,
1998
, “
Rational Motion Design—A Survey
,”
Comput.-Aided Des.
,
30
, pp.
169
178
.
2.
Ju¨ttler
,
B.
, and
Wagner
,
M. G.
,
1996
, “
Computer-Aided Design with Spatial Rational B-Spline Motions
,”
ASME J. Mech. Des.
,
118
, pp.
193
201
.
3.
Belta
,
C.
, and
Kumar
,
V.
,
2002
, “
An SVD-Based Projection Method for Interpolation on SE(3),
IEEE Trans. Rob. Autom.
,
18
, pp.
334
345
.
4.
Shoemake
,
K.
,
1985
, “
Animating Rotation with Quaternion Curves
,”
ACM Siggraph
,
19
, pp.
245
254
.
5.
Fang
,
Y. C.
,
Hsieh
,
C. C.
,
Kim
,
M. J.
,
Chang
,
J. J.
, and
Woo
,
T. C.
,
1998
, “
Real Time Motion Fairing with Unit Quaternions
,”
Comput.-Aided Des.
,
30
, pp.
191
198
.
6.
Ge
,
Q. J.
,
1998
, “
On the Matrix Realization of the Theory of Biquaternions
,”
ASME J. Mech. Des.
,
120
, pp.
404
407
.
7.
Ge
,
Q. J.
, and
Ravani
,
R.
,
1994
, “
Geometric Construction of Be´zier Motions
,”
ASME J. Mech. Des.
,
116
, pp.
749
755
.
8.
Ge
,
Q. J.
, and
Ravani
,
R.
,
1994
, “
Computer Aided Geometric Design of Motion Interpolants
,”
ASME J. Mech. Des.
,
116
, pp.
756
762
.
9.
McCarthy, J. M., 1990, An Introduction to Theoretical Kinematics, MIT Press, Cambridge, MA, p. 130.
10.
Srinivasen
,
L. N.
, and
Ge
,
Q. J.
,
1998
, “
Fine Tuning of Rational B-Spline Motions
,”
ASME J. Mech. Des.
,
120
, pp.
46
51
.
11.
Etzel
,
K. R.
, and
McCarthy
,
J. M.
,
1999
, “
Interpolation of Spatial Displacements Using the Clifford Algebra of E4,
ASME J. Mech. Des.
,
121
, pp.
39
44
.
12.
Porteous, I. R., 1995, Clifford Algebras and the Classical Groups, Cambridge University Press, Cambridge, UK.
13.
Lounesto, P., 2001, Clifford Algebra and Spinors, 2nd edition, Cambridge University Press, Cambridge, UK.
14.
Baylis, W. E., ed., 1996, Clifford (Geometric) Algebras with Applications to Physics, Mathematics and Engineering, Birkhauser, Boston.
15.
Lasenby
,
J.
,
Fitzgerald
,
W. J.
,
Lasenby
,
A. N.
, and
Doran
,
C. J. L.
,
1998
, “
New Geometric Methods for Computer Vision: An Application to Structure and Motion Estimation
,”
Int. J. Comput. Vis.
,
26
, pp.
191
213
.
16.
Selig
,
J. M.
,
2000
, “
Clifford Algebra of Points, Lines and Planes
,”
Robotica
,
18
, pp.
545
556
.
17.
Mullineux
,
G.
,
2002
, “
Clifford Algebra of Three Dimensional Geometry
,”
Robotica
,
20
, pp.
687
697
.
18.
Sobczyk, G., and Bayro-Corrochano, E., eds., 2001, Advances in Geometric Algebra with Applications, Birkhauser Verlag, Boston, USA.
19.
Sommer, G., ed., 2001, Geometric Computing with Clifford Algebra: Theoretical Foundations and Applications in Computer Vision and Robotics, Springer Verlag, Heidelberg, Germany.
You do not currently have access to this content.