This paper looks at the use of a Clifford (or geometric) algebra for handling both rotations and translations in Euclidean space. The algebra is constructed over the real numbers using four basis vectors. Three of these generate a subalgebra which models three-dimensional space; the fourth acts as a projective coordinate. Spatial displacements are represented by bivectors of a certain form. The application to the generation of smooth motions using Be´zier and B-spline techniques is illustrated.
Issue Section:
Technical Papers
Topics:
Algebra
1.
Ro¨schel
, O.
, 1998
, “Rational Motion Design—A Survey
,” Comput.-Aided Des.
, 30
, pp. 169
–178
.2.
Ju¨ttler
, B.
, and Wagner
, M. G.
, 1996
, “Computer-Aided Design with Spatial Rational B-Spline Motions
,” ASME J. Mech. Des.
, 118
, pp. 193
–201
.3.
Belta
, C.
, and Kumar
, V.
, 2002
, “An SVD-Based Projection Method for Interpolation on SE(3),
” IEEE Trans. Rob. Autom.
, 18
, pp. 334
–345
.4.
Shoemake
, K.
, 1985
, “Animating Rotation with Quaternion Curves
,” ACM Siggraph
, 19
, pp. 245
–254
.5.
Fang
, Y. C.
, Hsieh
, C. C.
, Kim
, M. J.
, Chang
, J. J.
, and Woo
, T. C.
, 1998
, “Real Time Motion Fairing with Unit Quaternions
,” Comput.-Aided Des.
, 30
, pp. 191
–198
.6.
Ge
, Q. J.
, 1998
, “On the Matrix Realization of the Theory of Biquaternions
,” ASME J. Mech. Des.
, 120
, pp. 404
–407
.7.
Ge
, Q. J.
, and Ravani
, R.
, 1994
, “Geometric Construction of Be´zier Motions
,” ASME J. Mech. Des.
, 116
, pp. 749
–755
.8.
Ge
, Q. J.
, and Ravani
, R.
, 1994
, “Computer Aided Geometric Design of Motion Interpolants
,” ASME J. Mech. Des.
, 116
, pp. 756
–762
.9.
McCarthy, J. M., 1990, An Introduction to Theoretical Kinematics, MIT Press, Cambridge, MA, p. 130.
10.
Srinivasen
, L. N.
, and Ge
, Q. J.
, 1998
, “Fine Tuning of Rational B-Spline Motions
,” ASME J. Mech. Des.
, 120
, pp. 46
–51
.11.
Etzel
, K. R.
, and McCarthy
, J. M.
, 1999
, “Interpolation of Spatial Displacements Using the Clifford Algebra of E4,
” ASME J. Mech. Des.
, 121
, pp. 39
–44
.12.
Porteous, I. R., 1995, Clifford Algebras and the Classical Groups, Cambridge University Press, Cambridge, UK.
13.
Lounesto, P., 2001, Clifford Algebra and Spinors, 2nd edition, Cambridge University Press, Cambridge, UK.
14.
Baylis, W. E., ed., 1996, Clifford (Geometric) Algebras with Applications to Physics, Mathematics and Engineering, Birkhauser, Boston.
15.
Lasenby
, J.
, Fitzgerald
, W. J.
, Lasenby
, A. N.
, and Doran
, C. J. L.
, 1998
, “New Geometric Methods for Computer Vision: An Application to Structure and Motion Estimation
,” Int. J. Comput. Vis.
, 26
, pp. 191
–213
.16.
Selig
, J. M.
, 2000
, “Clifford Algebra of Points, Lines and Planes
,” Robotica
, 18
, pp. 545
–556
.17.
Mullineux
, G.
, 2002
, “Clifford Algebra of Three Dimensional Geometry
,” Robotica
, 20
, pp. 687
–697
.18.
Sobczyk, G., and Bayro-Corrochano, E., eds., 2001, Advances in Geometric Algebra with Applications, Birkhauser Verlag, Boston, USA.
19.
Sommer, G., ed., 2001, Geometric Computing with Clifford Algebra: Theoretical Foundations and Applications in Computer Vision and Robotics, Springer Verlag, Heidelberg, Germany.
Copyright © 2004
by ASME
You do not currently have access to this content.