A topology optimization method is developed to design a piezoelectric ceramic actuator together with a compliant mechanism coupling structure for dynamic applications. The objective is to maximize the mechanical efficiency with a constraint on the capacitance of the piezoceramic actuator. Examples are presented to demonstrate the effect of considering dynamic behavior compared to static behavior and the effect of sizing the piezoceramic actuator on the optimal topology and the capacitance of the actuator element. Comparison studies are also presented to illustrate the effect of damping, external spring stiffness, and driving frequency. The optimal topology of the compliant mechanism is shown to be dependent on the driving frequency, the external spring stiffness, and whether the piezoelectric actuator element is considered design or nondesign. At high driving frequencies, it was found that the dynamically optimized structure is very near resonance.

1.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
,
2003
, “
A Computational Approach to the Number Synthesis of Linkages
,”
ASME J. Mech. Des.
,
125
(
1
), pp.
110
118
.
2.
Tai
,
K.
,
Cui
,
G. Y.
, and
Ray
,
T.
,
2001
, “
Design Synthesis of Path Generating Compliant Mechanisms by Evolutionary Optimization of Topology and Shape
,”
ASME J. Mech. Des.
,
124
(
3
), pp.
492
500
.
3.
Xu
,
D.
, and
Ananthasuresh
,
G. K.
,
2003
, “
Freeform Skeletal Shape Optimization of Compliant Mechanisms
,”
AME J. Mech. Des.
,
125
(
2
), pp.
253
261
.
4.
Giurgiutiu
,
V.
,
Rogers
,
C. A.
, and
Chaudry
,
Z.
,
1997
, “
Design of Displacement-Amplified Induced-Strain Actuators for Maximum Energy Output
,”
ASME J. Mech. Des.
,
119
, pp.
511
517
.
5.
Paine, J. S. N., and Chaudry, Z., 1996, “The Impact of Amplification on Efficiency and Energy Density of Induced Strain Actuators,” in Proc. the ASME Aerospace Division, ASME, New York, pp. 511–516.
6.
Prechtl
,
E.
, and
Hall
,
S.
,
1999
, “
Design of a High Efficiency, Large Stroke, Electromechanical Actuator
,”
Smart Mater. Struct.
,
8
, pp.
13
30
.
7.
Maddisetty, H., and Frecker, M., 2001, “Piezoelectric Actuator Efficiency Definitions and Relation to Compliant Mechanism Design,” 2001 ASME Int. Mechanical Engineering Congress and Exposition, Adaptive Structures and Materials Symposium, New York.
8.
Min
,
S.
,
Nishiwaki
,
S.
, and
Kikuchi
,
N.
,
2000
, “
Unified Topology Design of Static and Vibrating Structures Using a Multiobjective Optimization
,”
Comput. Struct.
,
75
, pp.
93
116
.
9.
Nishiwaki
,
S.
,
Saitou
,
K.
,
Min
,
S.
, and
Kikuchi
,
N.
,
2000
, “
Topological Design Considering Flexibility Under Periodic Loads
,”
Struct. Multidisciplinary Optim.
,
19
(
1
), pp.
4
16
.
10.
Rhong
,
J. H.
,
Xie
,
Y. M.
,
Yang
,
X. Y.
, and
Liang
,
Q. Q.
,
2000
, “
Topology Optimization of Structures Under Dynamic Response Constraints
,”
J. Sound Vib.
,
234
(
2
), pp.
177
189
.
11.
Canfield
,
S.
, and
Frecker
,
M.
,
2000
, “
Topology Optimization of Compliant Mechanical Amplifiers for Piezoelectric Actuators
,”
Struct. Multidisciplinary Optim.
,
20
(
4
), pp.
269
278
.
12.
Frecker, M., and Canfield, S., 2000, “Design of Compliant Mechanism Amplifiers for Piezoceramic Stack Actuators Considering Stiffness Properties,” Proc. ASME Int. Mechanical Engineering Congress and Exposition, Dynamic Systems and Control, Special Session on Flexural Joints and Compliance Modeling, Orlando, ASME, New York.
13.
Nelli Silva
,
E. C.
,
Nishiwaki
,
S.
, and
Kikuchi
,
N.
,
2000
, “
Topology Optimization Design of Flextensional Actuators
,”
IEEE Trans. Ultrasonics, Ferroelec. Frequency Control
,
47
(
3
), pp.
657
671
.
14.
Nelli Silva
,
E. C.
, and
Kikuchi
,
N.
,
1999
, “
Design of Piezoelectric Transducers Using Topology Optimization
,”
Smart Mater. Struct.
,
8
, pp.
350
365
.
15.
Yin
,
L.
, and
Ananthasuresh
,
G. K.
,
2001
, “
Topology Optimization of Compliant Mechanisms With Multiple Materials Using a Peak Function Interpolation Scheme
,”
Struct. Multidisciplinary Optim.
,
23
(
1
), pp.
49
62
.
16.
Du
,
H.
,
Lau
,
G. K.
,
Lim
,
M. K.
, and
Qui
,
J.
,
2000
, “
Topological Optimization of Mechanical Amplifiers for Piezoelectric Actuators Under Dynamic Motion
,”
Smart Mater. Struct.
,
9
, pp.
788
800
.
17.
Chandrasekaran
,
S.
,
Lindner
,
D. K.
, and
Smith
,
R. C.
,
2000
, “
Optimized Design of Switching Amplifiers for Piezoelectric Actuators
,”
J. Intell. Mater. Syst. Struct.
,
11
(
4
), pp.
887
901
.
18.
Meirovitch, L., 1967, Analytical Methods in Vibrations, Macmillan Series in Applied Mechanics, F. Landis, (ed.) Macmillan, New York.
19.
Fox
,
R. L.
, and
Kapoor
,
M. P.
,
1968
, “
Rates of Change of Eigenvalues and Eigenvectors
,”
AIAA J.
,
6
, pp.
2426
2429
.
20.
Mills-Curran
,
W. C.
,
1988
, “
Calculation of Eigenvector Derivatives for Structures With Repeated Eigenvalues
,”
AIAA J.
,
26
, pp.
867
871
.
21.
Dailey
,
R. L.
,
1989
, “
Eigenvectors Derivatives With Repeated Eigenvalues
,”
AIAA J.
,
27
, pp.
486
491
.
22.
Wang
,
B. P.
,
1991
, “
Improved Approximate Methods for Computing Eigenvector Derivatives in Structural Dynamics
,”
AIAA J.
,
29
, pp.
1018
1020
.
23.
Song
,
D. T.
,
Han
,
W. Z.
,
Chen
,
S. H.
, and
Qiu
,
Z. P.
,
1996
, “
Simplified Calculation Eigenvector Derivatives With Repeated Eigenvalues
,”
AIAA J.
,
34
, pp.
859
862
.
24.
Aldeman
,
H. M.
, and
Haftka
,
R.
,
1986
, “
Sensitivity Analysis of Discrete Structural Systems
,”
AIAA J.
,
24
, pp.
823
832
.
25.
Smith
,
R. C.
, and
Ounaies
,
Z.
,
2000
, “
A Domain Wall Model for Hysteresis in Piezoelectric Materials
,”
J. Intell. Mater. Syst. Struct.
,
11
(
1
), pp.
62
79
.
26.
Abdalla, M., Frecker, M., Gurdal, Z., and Lindner, D. K., 2003, “Maximum Energy Efficiency Compliant Mechanism Design for Piezoelectric Stack Actuators,” ASME Int. Mechanical Engineering Congress and Exposition, Adaptive Structures Symposium, Washington, DC.
You do not currently have access to this content.