As variables in the design evaluation stage are imprecise (fuzzy), tools, such as fuzzy set theory, should be used. This paper presents several fuzzy approaches to design evaluation. Weights of criteria and performance levels are captured by fuzzy numbers, and the overall performance of an alternative is calculated through the new fuzzy weighted average. Different approaches to express and calculate performance are discussed. Two metrics for measuring performance levels per criterion of a solution are proposed. Also, a new type of fuzzy goal is suggested. Finally, a novel way of comparing the overall performance of a design candidate by drawing an aggregate profile of performance is proposed. It is concluded that fuzzy set theory is a powerful and flexible tool for dealing with the imprecision in different types of problems in design evaluation.

1.
Wood
,
K. L.
, and
Antonsson
,
E. K.
,
1990
, “
Modeling Imprecision and Uncertainty in Preliminary Engineering Design
,”
Mech. Mach. Theory
,
25
(
3
), pp.
305
324
.
2.
Antonsson
,
E. K.
, and
Otto
,
K. N.
,
1995
, “
Imprecision in Engineering Design
,”
ASME J. Mech. Des.
,
117B
, pp.
25
32
.
3.
Giachetti
,
R. E.
,
Young
,
R. E.
,
Roggatz
,
A.
,
Eversheim
,
W.
, and
Perrone
,
G.
,
1997
, “
A Methodology for the Reduction of Imprecision in the Engineering Process
,”
Eur. J. Oper. Res.
,
100
, pp.
277
292
.
4.
Vanegas
,
L. V.
, and
Labib
,
A. W.
,
2001
, “
A Fuzzy Quality Function Deployment (FQFD) Model for Deriving Optimum Targets
,”
Int. J. Prod. Res.
,
39
(
1
), pp.
99
120
.
5.
Thurston
,
D. L.
, and
Carnahan
,
J. V.
,
1992
, “
Fuzzy Ratings and Utility Analysis in Preliminary Design Evaluation of Multiple Attributes
,”
ASME J. Mech. Des.
,
114
, pp.
648
658
.
6.
Kaymak, U., and Van Nauta Lemke, H. R., 1993, “A Parametric Generalized Goal Function for Fuzzy Decision Making With Unequally Weighted Objectives,” IEEE International Conference on Fuzzy Systems, March, pp. 1156–1160.
7.
Carnahan
,
J. V.
,
Thurston
,
D. L.
, and
Liu
,
T.
,
1994
, “
Fuzzing Ratings for Multiattribute Design Decision-Making
,”
ASME J. Mech. Des.
,
116
, pp.
511
521
.
8.
Durr
,
H.
, and
Schramm
,
M.
,
1997
, “
Feature Based Feedback Into the Early Stages of Design
,”
Eur. J. Oper. Res.
,
100
, pp.
338
350
.
9.
Muller
,
K.
, and
Sebastian
,
H.-J.
,
1997
, “
Intelligent Systems for Engineering Design and Configuration Problems
,”
Eur. J. Oper. Res.
,
100
, pp.
315
326
.
10.
Hsiao
,
S.-W.
,
1998
, “
Fuzzy Logic Based Decision Model for Product Design
,”
Int. J. Ind. Ergonom.
,
21
, pp.
103
116
.
11.
Vanegas
,
L. V.
, and
Labib
,
A. W.
,
2001
, “
Application of New Fuzzy-Weighted Average (NFWA) Method to Engineering Design Evaluation
,”
Int. J. Prod. Res.
,
39
(
6
), pp.
1147
1162
.
12.
Saaty, T. L., 1994, Fundamentals of Decision Making and Priority Theory With the Analytical Hierarchy Process, RWS Publications, Pittsburgh.
13.
Chen
,
Y. H.
,
1996
, “
Fuzzy Ratings in Mechanical Engineering Design—Application to Bearing Selection
,”
Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf.
,
210
, pp.
49
53
.
14.
Khoo
,
L. P.
, and
Ho
,
N. C.
,
1996
, “
Framework of a Fuzzy Quality Function Deployment System
,”
Int. J. Prod. Res.
,
34
, pp.
299
311
.
15.
Zhou
,
M.
,
1998
, “
Fuzzy Logic and Optimization Models for Implementing QFD
,”
Comput. Ind. Eng.
,
35
, pp.
237
240
.
16.
Zhou, M., 1997, “Fuzzy Logic Based Models for Quality Planning and Improvement,” ASME Conference: Intelligent Engineering Systems Through Artificial Neural Networks, ASME, New York, Vol. 7, pp. 311–316.
17.
Wang
,
J.
,
1999
, “
Fuzzy Outranking Approach to Prioritize Design Requirements in Quality Function Deployment
,”
Int. J. Prod. Res.
,
37
, pp.
899
916
.
18.
Klir, G. J., and Floger, T. A., 1988, Fuzzy Sets, Uncertainty and Information, Prentice-Hall, Englewood Cliffs, NJ.
19.
Klir, G. J., and Yuan, B., 1995, Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice-Hall, Englewood Cliffs, NJ.
20.
Zadeh, L. A., 1965, “Fuzzy Sets,” Information and Control, Academic Press, 8, pp. 338–353.
21.
Wang
,
J.
,
1997
, “
A Fuzzy Outranking Method for Conceptual Design Evaluation
,”
Int. J. Prod. Res.
,
35
, pp.
995
1010
.
22.
Chen
,
S. H.
,
1985
, “
Ranking Fuzzy Numbers With Maximising Set and Minimizing Set
,”
Fuzzy Sets Syst.
,
17
, pp.
113
129
.
23.
Masud, A. S. M., and Dean, E. B., 1993, “Using Fuzzy Sets in Quality Function Deployment,” Proc. the 2nd Industrial Engineering Research Conference, pp. 270–274.
24.
Farhang-Mehr
,
A.
, and
Azarm
,
S.
,
2003
, “
An Information-Theoretic Entropy Metric for Assessing Multi-Objective Optimization Solution Set Quality
,”
ASME J. Mech. Des.
,
125
(
4
), pp.
655
663
.
25.
McAdams
,
D. A.
, and
Wood
,
K. L.
,
2002
, “
A Quantitative Similarity Metric for Design-by-Analogy
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
173
182
.
26.
Wu
,
J.
, and
Azarm
,
S.
,
2001
, “
Metrics for Quality Assessment of a Multiobjective Design Optimization Solution Set
,”
ASME J. Mech. Des.
,
123
(
1
), pp.
18
25
.
27.
Kota
,
S.
,
Sethuraman
,
K.
, and
Miller
,
R.
,
2000
, “
A Metric for Evaluating Design Commonality in Product Families
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
403
410
.
28.
Shah
,
J. J.
,
Kulkarni
,
S. V.
, and
Vargas-Hernandez
,
N.
,
2000
, “
Evaluation of Idea Generation Methods for Conceptual Design: Effectiveness Metrics and Design of Experiments
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
377
384
.
29.
Buckley
,
J. J.
,
1984
, “
The Multiple-Judge, Multiple Criteria Ranking Problem: A Fuzzy-Set Approach
,”
Fuzzy Sets Syst.
,
13
, pp.
25
37
.
30.
Weck
,
M.
,
Klocke
,
F.
,
Schell
,
H.
, and
Ruenauver
,
E.
,
1997
, “
Evaluating Alternative Production Cycles Using the Extended Fuzzy AHP Method
,”
Eur. J. Oper. Res.
,
100
, pp.
351
366
.
31.
Jones
,
J. D.
, and
Hua
,
Y.
,
1998
, “
A Fuzzy Knowledge Base to Support Routine Engineering Design
,”
Fuzzy Sets Syst.
,
98
, pp.
267
278
.
32.
Giachetti
,
R. E.
,
1998
, “
A Decision Support System for Material and Manufacturing Process Selection
,”
J. Intel. Manuf.
,
9
, pp.
265
276
.
33.
Esawi
,
A. M. K.
, and
Ashby
,
M. F.
,
1998
, “
Computer-Based Selection of Manufacturing Processes: Methods, Software and Case Studies
,”
Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf.
,
212
(
B8
), pp.
595
610
.
You do not currently have access to this content.