A three degree-of-freedom (3DOF) pseudo-rigid-body model (PRBM) has been developed and used in the design of a new class of self-retracting fully compliant bistable micromechanism (SRFBM). The SRFBM provides small-displacement linear travel bistability and is suitable for low-power microswitching applications. The design process involved a combination of single and multiple degree-of-freedom PRBM and finite element models to quickly proceed from a concept rigid-body mechanism to fully compliant fabrication-ready geometry. The 3DOF model presented here was developed to more accurately model the behavior of the tensural pivots—a new class of compliant segment used to avoid combined compressive loading of flexible segments. Four SRFBM designs were fabricated and tested for bistability, on-chip actuation, critical force, and fatigue tests. These tests validate the models used in the design process and demonstrate the functionality and reliability of the SRFBM.

1.
Masters
,
N. D.
, and
Howell
,
L. L.
,
2003
, “
A Self-Retracting Fully-Compliant Bistable Micromechanism
,”
J. Microelectromech. Syst., Trans. IEEE ASME
,
12
, pp.
273
280
.
2.
Ha¨lg, B., 1990, “On a Nonvolatile Memory Cell Based on Micro-Electro-Mechanics,” Proceedings Micro Electro Mechanical Systems, 1990, An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots, IEEE, pp. 172–176.
3.
Matoba H., Ishikawa, T., Kim, C.-J., and Muller, R. S., 1994, “A Bistable Snapping Microactuator,” Proc. IEEE Micro Electro-Mechanical Systems, Jan. 1994, Oiso (Japan), pp. 45–50.
4.
Vangbo
,
M.
,
1998
, “
A Lateral Symmetrically Bistable Buckled Beam
,”
J. Micromech. Microeng.
,
8
, pp.
29
32
.
5.
Vangbo
,
M.
,
1998
, “
An Analytical Analysis of a Compressed Bistable Buckled Beam
,”
Sens. Actuators, A
,
69
, pp.
212
216
.
6.
Jensen, B. D., Parkinson, M. B., Kurabayashi, K., Howell, L. L., and Baker, M. S., 2001, “Design Optimization of a Fully-Compliant Bistable Micro-Mechanism,” Microelectromechanical Systems (MEMS), at the 2001 ASME International Mechanical Engineering Congress and Exposition, November, 2001, IMECE2001/MEMS-23852.
7.
Qiu
,
J.
,
Lang
,
J. H.
, and
Slocum
,
A. H.
,
2004
, “
A Curved-Beam Bistable Mechanism
,”
J. Microelectromech. Syst.
,
13
, pp.
137
146
.
8.
Taher
,
M.
, and
Saif
,
A.
,
2000
, “
On a Tunable Bistable MEMS—Theory and Experiment
,”
J. Microelectromech. Syst.
,
9
, pp.
157
170
.
9.
Baker
,
M. S.
, and
Howell
,
L. L.
,
2002
, “
On-Chip Actuation of an In-Plane Compliant Bistable Micro-Mechanism
,”
J. Microelectromech. Syst.
,
11
, pp.
566
573
.
10.
Kruglick, E. J. J., and Pister, K. S. J., 1998, “Bistable MEMS Relays and Contact Characterization,” IEEE Solid-State Sensor and Actuator Workshop, Hilton Head Island, South Carolina, June 8–11, pp. 333–337.
11.
Jensen
,
B. D.
,
Howell
,
L. L.
, and
Salmon
,
L. G.
,
1999
, “
Design of Two-Link In-Plane, Bistable Compliant Micro-Mechanisms
,”
J. Mech. Des.
,
121
, pp.
416
423
.
12.
Kruglick
,
E. J. J.
, and
Pister
,
K. S. J.
,
1999
, “
Lateral MEMS Microcontact Considerations
,”
J. Microelectromech. Syst.
,
8
, pp.
264
271
.
13.
Jensen
,
B. D.
, and
Howell
,
L. L.
,
2003
, “
Identification of Compliant Pseudo-Rigid-Body Mechanism Configurations Resulting in Bistable Behavior
,”
J. Mech. Des.
,
125
, pp.
701
708
.
14.
Baker, M. S., Lyon, S. M., and Howell, L. L., 2000, “A Linear Displacement Bistable Micromechanism,” Proceedings of the 2000 ASME Design Engineering Technical Conferences, DETC2000/MECH-14117, pp. 1–7.
15.
Koester, D. A., Mahadevan, R., Hardy, B., and Markus, K. W., 2000, MUMPs™ Design Handbook Revision 5.0, Cronos Integrated Microsystems, Research Triangle Park, NC.
16.
Rodgers, S., 1999, “Dynamic MEMS Design,” Sandia MEMS Advanced Design Short Course, Sandia National Laboratories, Albuquerque, NM.
17.
Howell, L. L., 2001, Compliant Mechanisms, Wiley, New York.
18.
Frecker
,
M.
,
Kikuchi
,
N.
, and
Kota
,
S.
,
1999
, “
Topology Optimization of Compliant Mechanisms With Multiple Outputs
,”
Struct. Optim.
,
17
, pp.
269
278
.
19.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
,
2000
, “
On an Optimal Property of Compliant Topologies
,”
Struct. Multidisc. Opt.
,
19
, pp.
36
49
.
20.
Pedersen
,
C. B. W.
,
Buhl
,
T.
, and
Sigmund
,
O.
,
2001
, “
Topology Synthesis of Large-Displacement Compliant Mechanisms
,”
Int. J. Numer. Methods Eng.
,
50
, pp.
2683
2705
.
21.
Tai
,
K.
,
Cui
,
G. Y.
, and
Ray
,
T.
,
2002
, “
Design Synthesis of Path Generating Compliant Mechanisms by Evolutionary Optimization of Topology and Shape
,”
J. Mech. Des.
,
124
, pp.
492
500
.
22.
Xu
,
D.
, and
Ananthasuresh
,
G. K.
,
2003
, “
Freeform Skeletal Shape Optimization of Compliant Mechanisms
,”
J. Mech. Des.
,
125
, pp.
253
261
.
23.
Ananthasuresh, G. K., and Frecker, M., 2001, “Optimal Synthesis With Continuum Models,” Compliant Mechanisms, John Wiley, New York.
24.
Jensen, B. D., and Howell, L. L., 2004, “Bistable Configurations of Compliant Mechanisms Modeled Using Four Links and Translational Joints,” J. Mech. Des., in press.
25.
Howell
,
L. L.
, and
Midha
,
A.
,
1994
, “
A Method for the Design of Compliant Mechanisms With Small-Length Flexural Pivots
,”
ASME J. Mech. Des.
,
116
, pp.
280
290
.
26.
Guerinot, A. E., Magleby, S. P., Howell, L. L., and Todd, R. H., 2005, “Compliant Joint Design Principles for High Compressive Load Situations,” J. Mech. Design, in press.
27.
Gere, J. M., and Timoshenko, S. P., 1984, Mechanics of Materials, 3rd ed., PWS Kent, Boston.
28.
Juvinall, R. C., 1967, Engineering Considerations of Stress, Strain, and Strength, McGraw-Hill, New York.
29.
Masters, N. D., and Howell, L. L., “A Three Degree of Freedom Pseudo-Rigid-Body Model for the Design of a Fully Compliant Bistable Micromechanism,” Proceedings of the 2002 ASME Mechanisms and Robotics Conference, DETC2002/MECH-34202.
30.
Paul, B., 1979, Kinematics and Dynamics of Planar Machinery, Prentice-Hall, Upper Saddle River, NJ.
31.
Koester, D. A., Mahadevan, R., Hardy, B., and Markus, K. W., 2000, MUMPs Design Handbook, Rev 5.0, Cronos Integrated Microsystems, Research Triangle Park, NC.
32.
Cragun, R., and Howell, L. L., 1999, “Linear Thermomechanical Microactuators,” Microelectromechanical Systems (MEMS), at the 1999 ASME International Mechanical Engineering Congress and Exposition, pp. 181–188.
33.
Howell
,
L. L.
, and
McLain
,
T. W.
,
2002
, “
A Little Push
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
,
124
, pp.
58
59
.
34.
Lott
,
C. D.
,
McLain
,
T. W.
,
Harb
,
J. N.
, and
Howell
,
L. L.
,
2002
, “
Modeling the Thermal Behavior of a Surface-Micromachined Linear-Displacement Thermomechanical Microactuator
,”
Sens. Actuators, A
,
101
, pp.
239
250
.
35.
Wittwer
,
J. W.
,
Gomm
,
T.
, and
Howell
,
L. L.
,
2002
, “
Surface Micromachined Force Gauges: Uncertainty and Reliability
,”
J. Micromech. Microeng.
,
12
, pp.
13
20
.
You do not currently have access to this content.