A core challenge in product family optimization is to jointly determine (1) the optimal selection of components to be shared across product variants and (2) the optimal values for design variables that define those components. Each of these subtasks depends on the other; however, due to the combinatorial nature and high computational cost of the joint problem, prior methods have forgone optimality of the full problem by fixing the platform a priori, restricting the platform configuration to all-or-none component sharing, or optimizing the joint problem in multiple stages. In this paper, we address these restrictions by (1) introducing an extended metric to account for generalized commonality, (2) relaxing the metric to the continuous space to enable gradient-based optimization, and (3) proposing a decomposed single-stage method for optimizing the joint problem. The approach is demonstrated on a family of ten bathroom scales. Results indicate that generalized commonality dramatically improves the quality of optimal solutions, and the decomposed single-stage approach offers substantial improvement in scalability and tractability of the joint problem, providing a practical tool for optimizing families consisting of many variants.

1.
Simpson
,
T. W.
, 2005, “
Methods for Optimizing Product Platforms and Product Families: Overview and Classification
,”
Product Platform and Product Family Design: Methods and Applications
,
T. W.
Simpson
,
Z.
Siddique
, and
J.
Jiao
, eds.,
Springer
,
New York
, pp.
133
156
.
2.
Thevenot
,
H. J.
, and
Simpson
,
T. W.
, 2006, “
Commonality Indices for Product Family Design: A Detailed Comparison
,”
J. Eng. Design
0954-4828,
17
(
2
), pp.
99
119
.
3.
Collier
,
D. A.
, 1981, “
The Measurement and Operating Benefits of Component Part Commonality
,”
Decision Sci.
0011-7315,
12
(
1
), pp.
85
96
.
4.
Martin
,
M. V.
, and
Ishii
,
K.
, 2002, “
Design for Variety: Developing Standardized and Modularized Product Platform Architectures
,”
Res. Eng. Des.
0934-9839,
13
(
4
), pp.
213
235
.
5.
Wacker
,
J. G.
, and
Trelevan
,
M.
, 1986, “
Component Part Standardization: An Analysis of Commonality Sources and Indices
,”
J. Operations Manage.
0272-6963,
6
(
2
), pp.
219
240
.
6.
Jiao
,
J.
, and
Tseng
,
M. M.
, 2000, “
Understanding Product Family for Mass Customization by Developing Commonality Indices
,”
J. Eng. Design
0954-4828,
11
(
3
), pp.
225
243
.
7.
Kota
,
S.
, and
Sethuraman
,
K.
, 1998, “
Managing Variety in Product Families Through Design for Commonality
,”
Design Theory and Methodology—DTM’98
,
Atlanta, GA
, ASME Paper No. DETC98/DTM-5651.
8.
Siddique
,
Z.
,
Rosen
,
D. W.
, and
Wang
,
N.
, 1998, “
On the Applicability of Product Variety Design Concepts to Automotive Platform Commonality
,”
ASME Design Engineering Technical Conferences—Design Theory and Methodology
,
Atlanta, GA
, ASME Paper No. DETC98/DTM-5661.
9.
Thevenot
,
H. J.
, and
Simpson
,
T. W.
, 2005, “
A Comprehensive Metric for Evaluating Commonality in a Product Family
,”
J. Eng. Design
0954-4828,
18
(
6
), pp.
577
598
.
10.
Akundi
,
S.
,
Simpson
,
T. W.
, and
Reed
,
P. M.
, 2005, “
Multi-objective Design Optimization for Product Platform and Product Family Design Using Genetic Algorithms
,”
ASME Design Engineering Technical Conferences—Design Automation Conference
,
Long Beach, CA
, ASME.
11.
Hassan
,
R.
,
De Weck
,
O.
, and
Springmann
,
P.
, 2004, “
Architecting a Communication Satellite Product Line
,”
22nd AIAA International Communications Satellite Systems Conference & Exhibit 2004 (ICSSC)
,
Monterey, CA
, AIAA.
12.
Khire
,
R. A.
,
Messac
,
A.
, and
Simpson
,
T. W.
, 2006, “
Optimal Design of Product Families Using Selection-Integrated Optimization (SIO) Methodology
,”
11th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
,
Portsmouth, VA
, AIAA.
13.
Messac
,
A.
,
Martinez
,
M. P.
, and
Simpson
,
T. W.
, 2002, “
A Penalty Function for Product Family Design Using Physical Programming
,”
ASME J. Mech. Des.
1050-0472,
124
(
2
), pp.
164
172
.
14.
Nayak
,
R. U.
,
Chen
,
W.
, and
Simpson
,
T. W.
, 2002, “
A Variation-Based Method for Product Family Design
,”
Eng. Optimiz.
0305-215X,
34
(
1
), pp.
65
81
.
15.
Simpson
,
T. W.
, and
D’Souza
,
B. S.
, 2004, “
Assessing variable levels of platform commonality within a product family using a multiobjective genetic algorithm
,”
Concurr. Eng. Res. Appl.
1063-293X,
12
(
2
), pp.
119
129
.
16.
Fellini
,
R.
,
Kokkolaras
,
M.
,
Papalambros
,
P.
, and
Perez-Duarte
,
A.
, 2005, “
Platform Selection Under Performance Loss Constraints in Optimal Design of Product Families
,”
ASME J. Mech. Des.
1050-0472,
127
(
4
), pp.
524
535
.
17.
Cetin
,
O. L.
, and
Saitou
,
K.
, 2004, “
Decomposition-Based Assembly Synthesis for Structural Modularity
,”
ASME J. Mech. Des.
1050-0472,
126
(
2
), pp.
234
243
.
18.
Fujita
,
K.
, and
Yoshida
,
H.
, 2001, “
Product Variety Optimization: Simultaneous Optimization of Module Combination and Module Attributes
,”
ASME Design Engineering Technical Conferences—Design Automation Conference
,
Pittsburgh, PA
, ASME.
19.
Gonzalez-Zugasti
,
J. P.
, and
Otto
,
K. N.
, 2000, “
Modular Platform-Based Product Family Design
,”
ASME Design Engineering Technical Conferences—Design Automation Conference
,
Baltimore, MD
, ASME.
20.
Khajavirad
,
A.
,
Michalek
,
J. J.
, and
Simpson
,
T. W.
, 2007, “
A Decomposed Genetic Algorithm for Solving the Joint Product Family Optimization Problem
,”
Third AIAA Multidisciplinary Design Optimization Specialists Conference
,
Honolulu, HI
, AIAA.
21.
Kim
,
H. M.
,
Chen
,
W.
, and
Wiecek
,
M. M.
, 2006, “
Lagrangian coordination for Enhancing the Convergence of Analytical Target Cascading
,”
AIAA J.
0001-1452,
44
(
10
), pp.
2197
2207
.
22.
Michalek
,
J. J.
, and
Papalambros
,
P. Y.
, 2005, “
An Efficient Weighting Update Method to Achieve Acceptable Consistency Deviation in Analytical Target Cascading
,”
ASME J. Mech. Des.
1050-0472,
127
(
2
), pp.
206
214
.
23.
Michelena
,
N.
,
Park
,
H.
, and
Papalambros
,
P. Y.
, 2003, “
Convergence Properties of Analytical Target Cascading
,”
AIAA J.
0001-1452,
41
(
5
), pp.
897
905
.
24.
Tosserams
,
S.
,
Etman
,
L. F. P.
,
Papalambros
,
P. Y.
, and
Rooda
,
J. E.
, 2006, “
An Augmented Lagrangian Relaxation for Analytical Target Cascading Using the Alternating Direction Method of Multipliers
,”
Struct. Multidiscip. Optim.
1615-147X,
31
(
3
), pp.
176
189
.
25.
Li
,
Y.
,
Lu
,
Z.
, and
Michalek
,
J. J.
, 2008, “
Diagonal Quadratic Approximation for Parallelization of Analytical Target Cascading
,”
ASME J. Mech. Des.
1050-0472,
130
(
5
), p.
051402
.
26.
Choudhary
,
R.
,
Malkawi
,
A.
, and
Papalambros
,
P. Y.
, 2005, “
Analytic Target Cascading in Simulation-Based Building Design
,”
Autom. Constr.
0926-5805,
14
(
4
), pp.
551
568
.
27.
Kim
,
H. M.
,
Rideout
,
D. G.
,
Papalambros
,
P. Y.
, and
Stein
,
J. L.
, 2003, “
Analytical Target Cascading in Automotive Vehicle Design
,”
ASME J. Mech. Des.
1050-0472,
125
(
3
), pp.
481
489
.
28.
Kokkolaras
,
M.
,
Fellini
,
R.
,
Kim
,
H. M.
,
Michelena
,
N. F.
, and
Papalambros
,
P. Y.
, 2002, “
Extension of the Target Cascading Formulation to the Design of Product Families
,”
Struct. Multidiscip. Optim.
1615-147X,
24
(
4
), pp.
293
301
.
29.
Michalek
,
J. J.
,
Feinberg
,
F. M.
, and
Papalambros
,
P. Y.
, 2005, “
Linking Marketing and Engineering Product Design Decisions via Analytical Target Cascading
,”
Journal of Product Innovation Management
,
22
, pp.
42
62
.
30.
Michalek
,
J. J.
,
Ceryan
,
O.
,
Papalambros
,
P. Y.
, and
Koren
,
Y.
, 2006, “
Balancing Marketing and Manufacturing Objectives in Product Line Design
,”
ASME J. Mech. Des.
1050-0472,
128
(
6
), pp.
1196
1204
.
31.
Kumar
,
D.
,
Chen
,
W.
, and
Simpson
,
T.
, 2007, “
A Market-Driven Approach to the Design of Platform-Based Product Families
,”
Int. J. Prod. Res.
0020-7543, in press, published online August 2007.
You do not currently have access to this content.