A compliant mechanism transmits motion and force by deformation of its flexible members. It has no relative moving parts and thus involves no wear, lubrication, noise, or backlash. Compliant mechanisms aim to maximize flexibility while maintaining sufficient stiffness so that satisfactory output motion may be achieved. When designing compliant mechanisms, the resulting shapes sometimes lead to rigid-body type linkages where compliance and rotation is lumped at a few flexural pivots. These flexural pivots are prone to stress concentration and thus limit compliant mechanisms to applications that only require small-deflected motion. To overcome this problem, a systematic design method is presented to synthesize the shape of a compliant mechanism so that compliance is distributed more uniformly over the mechanism. With a selected topology and load conditions, this method characterizes the free geometric shape of a compliant segment by its rotation and thickness functions. These two are referred as intrinsic functions and they describe the shape continuously within the segment so there is no abrupt change in geometry. Optimization problems can be conveniently formulated with cusps and intersecting loops naturally circumvented. To facilitate the optimization process, a numerical algorithm based on the generalized shooting method will be presented to solve for the deflected shape. Illustrative examples will demonstrate that through the proposed design method, compliant mechanisms with distributed compliance will lessen stress concentration so they are more robust and have a larger deflected range. It is expected that the method can be applied to design compliant mechanisms for a wide variety of applications.

1.
Lobontiu
,
N.
, 2002,
Compliant Mechanisms: Design of Flexure Hinges
,
CRC
,
Boca Raton, FL
.
2.
Smith
,
S. T.
, 2000,
Flexures: Elements of Elastic Mechanisms
,
CRC
,
Boca Raton, FL
.
3.
Jones
,
R. V.
, 1998,
Instruments and Experiences: Papers on Measurement and Instrument Design
,
Wiley
,
New York
.
4.
Paros
,
J. M.
, and
Weisbord
,
L.
, 1965, “
How to Design Flexure Hinges
,”
Mach. Des.
0024-9114,
37
, pp.
151
156
.
5.
Ha
,
J. L.
,
Kung
,
Y. S.
,
Hu
,
S. C.
, and
Fung
,
R. F.
, 2006, “
Optimization of a Micro-Positioning Scott–Russell Mechanism by Taguchi Method
,”
Sens. Actuators, A
0924-4247,
125
, pp.
565
572
.
6.
Yi
,
B. J.
,
Chung
,
G. B.
,
Na
,
H. Y.
,
Kim
,
W. K.
, and
Suh
,
I. H.
, 2003, “
Design and Experiment of a 3-DOF Parallel Micromechanism Utilizing Flexure Hinges
,”
IEEE Trans. Rob. Autom.
1042-296X,
19
(
2
), pp.
604
612
.
7.
Pham
,
H. H.
,
Chen
,
I. M.
, and
Yeh
,
H. C.
, 2005, “
Micro-Motion Selective-Actuation XYZ Flexure Parallel Mechanism: Design and Modeling
,”
Journal of Micromechatronics
,
3
(
2
), pp.
51
73
.
8.
Frecker
,
M. I.
,
Powell
,
K. M.
, and
Haluck
,
R
.
, 2005, “
Design of a Multifunctional Compliant Instrument for Minimally Invasive Surgery
,”
ASME J. Biomech. Eng.
0148-0731,
127
, pp.
990
993
.
10.
Howell
,
L. L.
, 2001,
Compliant Mechanisms
,
Wiley
,
New York
.
11.
Chang
,
S. H.
,
Tseng
,
C. K.
, and
Chien
,
H. C.
, 1999, “
An Ultra-precision XY θz Piezo-Micropositioner Part I: Design and Analysis
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
46
(
2
), pp.
897
905
.
12.
Culpepper
,
M. L.
,
Anderson
,
G.
, 2004, “Design of a Low-Cost Nano-Manipulator Which Utilizes a Monolithic, Spatial Compliant Mechanism,”
Precis. Eng.
0141-6359,
28
(
2
), pp.
469
482
.
13.
Lee
,
K.-M.
, and
Arjunan
,
S.
, 1991, “
A Three-DOF Micro-motion In-Parallel Actuated Manipulator
,”
IEEE Trans. Rob. Autom.
1042-296X,
7
(
2
), pp.
634
641
.
14.
Frisch-Fay
,
R.
, 1962,
Flexible Bars
,
Butterworths
,
Washington
.
15.
Bathe
,
K. J.
, 1996,
Finite Element Procedures
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
16.
Lan
,
C.-C.
, and
Lee
,
K.-M.
, 2006, “
Generalized Shooting Method for Analyzing Compliant Mechanisms With Curved Members
,”
ASME J. Mech. Des.
0161-8458,
128
(
2
), pp.
765
775
.
17.
Bendsoe
,
M. P.
, 1995,
Optimization of Structural Topology, Shape, and Material
,
Springer
,
New York
.
18.
Nishiwaki
,
S.
,
Frecker
,
M.
,
Min
,
S.
, and
Kikuchi
,
N.
, 1998, “
Topology Optimization of Compliant Mechanisms Using the Homogenization Method
,”
Int. J. Numer. Methods Eng.
0029-5981,
42
(
2
), pp.
535
559
.
19.
Pedersen
,
C. B. W.
,
Buhl
,
T.
, and
Sigmund
,
O.
, 2001, “
Topology Synthesis of Large-Displacement Compliant Mechanisms
,”
Int. J. Numer. Methods Eng.
0029-5981,
50
(
2
), pp.
2683
2705
.
20.
Hull
,
P. A.
, and
Canfield
,
S.
, 2006, “
Optimal Synthesis of Compliant Mechanisms Using Subdivision and Commercial FEA
,”
ASME J. Mech. Des.
1050-0472,
128
(
2
), pp.
337
348
.
21.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
, 2001, “
Topology Synthesis of Compliant Mechanisms for Nonlinear Force-Deflection and Curves Path Specifications
,”
ASME J. Mech. Des.
1050-0472,
123
(
2
), pp.
33
42
.
22.
Joo
,
J.
, and
Kota
,
S.
, 2004,“
Topological Synthesis of Compliant Mechanisms Using Nonlinear Beam Elements
,”
Mech. Based Des. Struct. Mach.
1539-7734,
32
(
1
), pp.
17
38
.
23.
Lu
,
K.-J.
, and
Kota
,
S.
, 2006, “Topology and Dimensional Synthesis of Compliant Mechanisms Using Discrete Optimization,”
ASME J. Mech. Des.
1050-0472,
128
(
2
), pp.
1080
1091
.
24.
Hetrick
,
J. A.
, and
Kota
,
S.
, 1999, “
An Energy Formulation for Parametric Size and Shape Optimization of Compliant Mechanisms
,”
ASME J. Mech. Des.
1050-0472,
121
(
2
), pp.
229
234
.
25.
Yamaguchi, Fujio, 1988,
Curves and Surfaces in Computer Aided Geometric Design
,
Springer
,
New York
.
26.
Xu
,
D.
, and
Ananthasuresh
,
G. K.
, 2003, “
Freeform Skeletal Shape Optimization of Compliant Mechanisms
,”
ASME J. Mech. Des.
1050-0472,
125
(
2
), pp.
253
261
.
27.
Zhou
,
H.
, and
Ting
,
K.-L.
, 2006, “
Shape and Size Synthesis of Compliant Mechanisms Using Wide Curve Theory
,”
ASME J. Mech. Des.
1050-0472,
128
(
2
), pp.
551
558
.
28.
Faux
,
I. D.
, and
Pratt
,
M. J.
, 1979,
Computational Geometry for Design and Manufacture
,
Ellis Horwood
,
Chichester
.
29.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
, 2000, “
On an Optimal Property of Compliant Mechanisms
,”
Struct. Multidiscip. Optim.
1615-147X,
19
(
2
), pp.
36
49
.
30.
Lasser
,
D.
, 1989, “
Calculating the Self-Intersections of Bezier Curves
,”
Comput Ind.
0166-3615,
12
, pp.
259
268
.
31.
Stoer
,
J.
, and
Bulirsch
,
R.
, 1992,
Introduction to Numerical Analysis
,
Springer-Verlag
,
New York
.
32.
Ananthasuresh
,
G. K.
, and
Saggere
,
L.
, 1995, “
A One-piece Compliant Stapler
,” Mechanical Engineering and Applied Mechanics, University of Michigan, Technical Report (http://deepblue.lib.umich.edu/handle/2027.42/3277http://deepblue.lib.umich.edu/handle/2027.42/3277).
You do not currently have access to this content.