This paper examines the problem of finding the assembly configurations (ACs), also called circuits, of spatial single-loop single-DOF mechanisms. All six lower pairs are considered: revolute (R), cylindric (C), prismatic (P), helical (H), spheric (S), and planar (E). The RSSR, CSS, RRSC, CCS, and RRSRR mechanisms are covered, along with all variations in which an R joint is replaced with a P or H joint, or an S joint is replaced with an E joint. The RRCRC, RRRCC, and RRRRCR mechanisms are covered, along with all appropriate variations in which an R joint is replaced by a P or H joint. A numerical method is given to find the ACs, and is illustrated with several examples.

1.
Foster
,
D. E.
, 1999, “
Assembly Configurations of Planar Multi-Loop Mechanisms With Kinematic Limitations and Spatial Single-Loop Mechanisms
,” Ph.D. thesis, Purdue University, West Lafayette, IN.
2.
Foster
,
D. E.
, and
Cipra
,
R. J.
, 2002, “
An Automatic Method for Finding the Assembly Configurations of Planar Non-Single-Input-Dyadic Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
124
(
1
), pp.
58
67
.
3.
Hunt
,
K. H.
, 1978,
Kinematic Geometry of Mechanisms
,
Oxford University Press
,
Oxford
.
4.
Foster
,
D. E.
, and
Cipra
,
R. J.
, 1998, “
Assembly Configurations of Spatial Single-Loop Mechanisms With Revolute, Cylindrical, and Prismatic Joints
,”
Proceedings of the 1998 ASME Design Engineering Technical Conferences
, Atlanta, GA, Sept. 13–16, Paper No. MECH-5897.
5.
Freudenstein
,
F.
, and
Kiss
,
I. S.
, 1969, “
Type Determination of Skew Four-Bar Mechanisms
,”
ASME J. Eng. Ind.
0022-0817,
91
(
1
), pp.
220
224
.
6.
Bottema
,
O.
, 1971, “
The Motion of the Skew Four-Bar
,”
J. Mech.
0022-2569,
6
(
1
), pp.
69
79
.
7.
Freudenstein
,
F.
, and
Primrose
,
E. J. F.
, 1976, “
On the Criteria for the Rotatability of the Cranks of a Skew Four-Bar Linkage
,”
ASME J. Eng. Ind.
0022-0817,
98
(
4
), pp.
1285
1288
.
8.
Lee
,
K. -W.
,
Seo
,
Y. -J.
, and
Yoon
,
Y. -S.
, 1992, “
Practical Mobility Conditions for RSSR Mechanism
,”
Proceedings of the ASME Design Technical Conferences
, Vol.
47
, pp.
199
206
.
9.
Ting
,
K. -L.
, and
Dou
,
X.
, 1994, “
Branch, Mobility Criteria, and Classification of RSSR and Other Bimodal Linkages
,”
Proceedings of the ASME Design Technical Conferences
, Vol.
70
, pp.
303
310
.
10.
Gupta
,
V. K.
, and
Radcliffe
,
C. W.
, 1971, “
Mobility Analysis of Plane and Spatial Mechanisms
,”
ASME J. Eng. Ind.
0022-0817,
93
(
1
), pp.
125
130
.
11.
Williams
,
R. L.
, II
, and
Reinholtz
,
C. F.
, 1987, “
Mechanism Link Rotatability and Limit Position Analysis Using Polynomial Discriminants
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
109
(
2
), pp.
178
182
.
12.
Lee
,
D.
,
Youm
,
Y.
, and
Chung
,
W.
, 1996, “
Mobility Analysis of Spatial 4- and 5-Link Mechanisms of the RS Class
,”
Mech. Mach. Theory
0094-114X,
31
(
5
), pp.
673
690
.
13.
Sandor
,
G. N.
, and
Zhaung
,
X.
, 1984, “
On the Elimination of the Branching Problems in the Synthesis of Spatial Motion Generators With Spheric Joints. Part 1: Theory
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
106
(
3
), pp.
312
318
.
14.
Sandor
,
G. N.
,
Xu
,
Y.
, and
Weng
,
T. -C.
, 1986, “
Synthesis of 7-R Spatial Motion Generators With Prescribed Crank Rotations and Elimination of Branching
,”
Int. J. Robot. Res.
0278-3649,
5
(
2
), pp.
143
156
.
15.
Sandor
,
G. N.
,
Weng
,
T. -C.
, and
Xu
,
Y.
, 1988, “
The Synthesis of Spatial Motion Generators With Prismatic, Revolute and Cylindric Pairs Without Branching Defect
,”
Mech. Mach. Theory
0094-114X,
23
(
4
), pp.
269
274
.
16.
Rastegar
,
J.
, 1989, “
On the Derivation of Grashof-Type Movability Conditions With Transmission Angle Limitations for Spatial Mechanisms
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
111
(
4
), pp.
519
523
.
17.
Cheng
,
J. -C.
, and
Kohli
,
D.
, 1992, “
Synthesis of Mechanisms Including Circuit Defects, Branch Defects and Input-Crank Rotatability
,”
Proceedings of ASME Design Technical Conferences
, Vol.
46
, pp.
111
119
.
18.
Kohli
,
D.
,
Cheng
,
J. -C.
, and
Tsai
,
K. Y.
, 1994, “
Assemblability, Circuits, Branches, Locking Positions, and Rotatability of Input Links of Mechanisms With Four Closures
,”
ASME J. Mech. Des.
0161-8458,
116
(
1
), pp.
92
98
.
19.
Pamidi
,
P. R.
, and
Freudenstein
,
F.
, 1975, “
On the Motion of a Class of Five-Link, R-C-R-C-R, Spatial Mechanisms
,”
ASME J. Eng. Ind.
0022-0817,
97
(
1
), pp.
334
339
.
20.
Dou
,
X.
, and
Ting
,
K. -L.
, 1996, “
Classification, Rotatability and Branch Identification of Simple RCRCR Mechanisms
,”
Proceedings of the 1996 ASME Design Engineering Technical Conferences
, Irvine, CA, Aug. 19–22, Paper No. FAS-1363.
21.
Duffy
,
J.
, 1980,
Analysis of Mechanisms and Robot Manipulators
,
Wiley
,
New York
.
22.
Wampler
,
C. W.
,
Morgan
,
A. P.
, and
Sommese
,
A. J.
, 1990, “
Numerical Continuation Methods for Solving Polynomial Systems Arising in Kinematics
,”
ASME J. Mech. Des.
0161-8458,
112
(
1
), pp.
59
68
.
23.
Savage
,
M.
, and
Hall
,
A. S.
, 1970, “
Unique Descriptions of All Spherical Four-Bar Linkages
,”
ASME J. Eng. Ind.
0022-0817,
91
, pp.
559
563
.
24.
Kohli
,
D.
, and
Khonji
,
A.
, 1994, “
Grashof-Type Rotatability Criteria of Spherical Five-Bar Linkages
,”
ASME J. Mech. Des.
0161-8458,
116
(
1
), pp.
99
104
.
25.
Kohli
,
D.
, 1992, “
Rotatability Laws for Spherical N-Bar Chains
,”
Proceedings of the ASME Design Technical Conferences
, Vol.
47
, pp.
629
637
.
26.
Liu
,
Y. -W.
, and
Ting
,
K. -L.
, 1994, “
On the Rotatability of Spherical N-Bar Chains
,”
ASME J. Mech. Des.
0161-8458,
116
(
3
), pp.
920
923
.
27.
Reinholtz
,
C. F.
,
Sandor
,
G. N.
, and
Duffy
,
J.
, 1986, “
Branching Analysis of Spherical RRRR and Spatial RCCC Mechanisms
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
108
(
4
), pp.
481
486
.
28.
Chase
,
T. R.
, and
Mirth
,
J. A.
, 1993, “
Circuits and Branches of Single-Degree-of-Freedom Planar Linkages
,”
ASME J. Mech. Des.
0161-8458,
115
(
2
), pp.
223
230
.
You do not currently have access to this content.