This technical brief presents a dynamic model based on the traditional transfer matrix method (TMM) and Jones–Harris nonlinear rolling bearing model to study the effects of the extended structure parameters on the vibration behavior of a high-speed motorized spindle-bearing system. The first critical speed and the dynamic stiffness of the high-speed motorized spindle-bearing system are systematically studied. A design sensitivity analysis of the structure parameters is then conducted to identify the main factor to affect the first critical speed of the spindle-bearing system. The results show that the processing condition, the shaft shoulder, the dimension of motor, and the bearing arrangement are sensitive to the spindle dynamic behavior. The TMM model of the spindle-bearing system is verified by measuring the high-speed motorized spindle overall dynamic stiffness.

1.
Chen
,
C. H.
,
Wang
,
K. W.
, and
Shin
,
Y. C.
, 1994, “
An Integrated Approach Toward the Dynamic Analysis of High-Speed Spindles, Part I: System Model
,”
ASME J. Vibr. Acoust.
0739-3717,
116
, pp.
506
513
.
2.
Alfares
,
M.
, and
Elsharkawy
,
A.
, 2000, “
Effect of Grinding Forces on the Vibration of Grinding Machine Spindle System
,”
Int. J. Mach. Tools Manuf.
0890-6955,
40
, pp.
2003
2030
.
3.
Jorgensen
,
B. R.
, and
Shin
,
Y. C.
, 1998, “
Dynamics of Spindle-Bearing Systems at High Speeds Including Cutting Load Effects
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
120
, pp.
387
394
.
4.
Al-Shareef
,
K. J. H.
, and
Brandon
,
J. A.
, 1990, “
On the Effects of Variations in the Design Parameters on the Dynamic Performance of Machine Tool Spindle-Bearing Systems
,”
Int. J. Mach. Tools Manuf.
0890-6955,
30
(
3
), pp.
431
445
.
5.
Nelson
,
H. D.
, and
McVaugh
,
J. M.
, 1976, “
The Dynamics of Rotor-Bearing Systems Using Finite Elements
,”
ASME J. Mech. Des.
0161-8458,
93
, pp.
593
600
.
6.
Nelson
,
H. D.
, 1980, “
A Finite Rotating Shaft Element Using Timoshenko Beam Theory
,”
ASME J. Mech. Des.
0161-8458,
102
, pp.
793
803
.
7.
Lin
,
C. W.
,
Tu
,
J. F.
, and
Kamman
,
J.
, 2003, “
An Integrated Thermo-Mechanical-Dynamic Model to Characterize Motorized Machine Tool Spindles During Very High Speed Rotation
,”
Int. J. Mach. Tools Manuf.
0890-6955,
43
, pp.
1035
1050
.
8.
Cao
,
Y. Z.
, and
Altintas
,
Y.
, 2004, “
A General Method for the Modeling of Spindle-Bearing Systems
,”
ASME J. Mech. Des.
0161-8458,
126
, pp.
1089
1104
.
9.
Lin
,
C. W.
, and
Tu
,
J. F.
, 2007, “
Model-Based Design of Motorized Spindle Systems to Improve Dynamic Performance at High Speeds
,”
J. Manuf. Process.
1526-6125,
9
(
2
), pp.
94
108
.
10.
Kang
,
Y.
,
Chang
,
Y. P.
,
Tsai
,
J. W.
,
Chen
,
S. C.
, and
Yang
,
L. K.
, 2001, “
Integrated “CAE” Strategies for the Design of Machine Tool Spindle-Bearing Systems
,”
Finite Elem. Anal. Design
0168-874X,
37
, pp.
485
511
.
11.
Cao
,
Y. Z.
, and
Altintas
,
Y.
, 2007, “
Modeling of Spindle-Bearing and Machine Tool Systems for Virtual Simulation of Milling Operations
,”
Int. J. Mach. Tools Manuf.
0890-6955,
47
, pp.
1342
1350
.
12.
Jiang
,
S. Y.
, and
Zheng
,
S. F.
, 2010, “
A Modeling Approach for Analysis and Improvement of Spindle-Drawbar-Bearing Assembly Dynamics
,”
Int. J. Mach. Tools Manuf.
0890-6955,
50
, pp.
131
142
.
13.
Jiang
,
S. Y.
, and
Mao
,
H. B.
, 2010, “
Investigation of Variable Optimum Preload for a Machine Tool Spindle
,”
Int. J. Mach. Tools Manuf.
0890-6955,
50
, pp.
19
28
.
14.
Genta
,
G.
, 2005,
Dynamics of Rotating Systems
,
Springer
,
New York
.
15.
Prohl
,
M. A.
, 1945, “
A General Method for Calculating Critical Speeds of Flexible Rotors
,”
ASME J. Appl. Mech.
0021-8936,
12
, pp.
142
148
.
16.
Rao
,
J. S.
, 1983,
Rotor Dynamics
,
Wiley
,
New York
.
17.
Harris
,
T. A.
, 1984,
Rolling Bearing Analysis
,
Wiley
,
New York
.
18.
Qian
,
M.
, and
Jiang
,
S. Y.
, 2005, “
Dynamic Optimization of a High Speed Motorized Spindle
,”
China Mechanical Engineering
,
16
(
10
), pp.
864
868
.
You do not currently have access to this content.