Linear analysis of motion screws is a means for determining the mobility of a mechanism composed of the parallel combination of serial kinematic chains. Such a mechanism may have one or more degrees of freedom that vanish after a differential displacement from a reference posture. The Lie product, also called the Lie bracket, is known to give the derivative of a motion screw with respect to the displacement along an upstream screw in a serial chain. Serial chains having motion screws that are closed under the Lie product are known to retain their mobility after differential displacement. For a single-loop mechanism, which is composed of a pair of chains that are not closed under the Lie product, mobility is retained when the Lie closures of those chains are within the span of the union of motion screws of the two chains, a new result determined by applying the Baker–Campbell–Hausdorff expansion to the motion screws of the serial chain. When the Lie products have at most one dimension outside the union span, a second-order expression of mobility reduces to a quadratic form, allowing the numerical characterization of constraint singularities under that condition.

1.
Dai
,
J. S.
,
Huang
,
Z.
, and
Lipkin
,
H.
, 2006, “
Mobility of Overconstrained Parallel Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
128
, pp.
220
229
.
2.
Adams
,
J. D.
, and
Whitney
,
D. E.
, 2001, “
Application of Screw Theory to Constraint Analysis of Mechanical Assemblies Joined by Features
,”
ASME J. Mech. Des.
0161-8458,
123
, pp.
26
32
.
3.
Zhao
,
J. S.
,
Feng
,
Z. J.
, and
Wang
,
L. P.
, 2006, “
The Free Mobility of a Parallel Manipulator
,”
Robotica
0263-5747,
24
(
5
), pp.
635
641
.
4.
Rico
,
J. M.
, and
Ravani
,
B.
, 2007, “
On Calculating the Degrees of Freedom or Mobility of Overconstrained Linkages: Single-Loop Exceptional Linkages
,”
ASME J. Mech. Des.
0161-8458,
129
, pp.
301
311
.
5.
Yu
,
J.
,
Dai
,
J. S.
, and
Zhao
,
T.
, 2009, “
Mobility Analysis of Complex Joints by Means of Screw Theory
,”
Robotica
0263-5747,
27
(
6
), pp.
915
927
.
6.
Angeles
,
J.
, 1982,
Spatial Kinematic Chains: Analysis, Synthesis, Optimization
,
Springer
,
New York
.
7.
Angeles
,
J.
, 2003,
Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms
,
Springer
,
New York
.
8.
Gogu
,
G.
, 2005, “
Mobility of Mechanisms: A Critical Review
,”
Mech. Mach. Theory
0094-114X,
40
(
9
), pp.
1068
1097
.
9.
Müller
,
A.
, 2009, “
Generic Mobility of Rigid Body Mechanisms
,”
Mech. Mach. Theory
0094-114X,
44
(
6
), pp.
1240
1255
.
10.
Rico
,
J. M.
,
Gallardo
,
J.
, and
Duffy
,
J.
, 1999, “
Screw Theory and Higher Order Kinematic Analysis of Open Serial and Closed Chains
,”
Mech. Mach. Theory
0094-114X,
34
(
4
), pp.
559
586
.
11.
Ball
,
R. S.
, 1900,
A Treatise on the Theory of Screws
,
Cambridge University Press
,
Cambridge
.
12.
Rico
,
J. M.
,
Gallardo
,
J.
, and
Ravani
,
B.
, 2003, “
Lie Algebra and the Mobility of Kinematic Chains
,”
J. Rob. Syst.
0741-2223,
20
(
8
), pp.
477
499
.
13.
Freudenstein
,
F.
, 1962, “
On the Variety of Motions Generated by Mechanisms
,”
J. Eng. Ind.
0022-0817,
4
, pp.
156
160
.
14.
Karger
,
A.
, 1996, “
Singularity Analysis of Serial Robot-Manipulators
,”
ASME J. Mech. Des.
0161-8458,
118
, pp.
520
525
.
15.
Müller
,
A.
, and
Rico
,
J. M.
, 2008, “
Mobility and Higher Order Local Analysis of the Configuration Space of Single-Loop Mechanisms
,”
Advances in Robot Kinematics: Analysis and Design
,
J.
Lenarcic
and
P.
Wenger
, eds.,
Springer
,
The Netherlands
, pp.
215
224
.
16.
Sommer
,
H. J.
, III
, 2008, “
Jerk Analysis and Axode Geometry of Spatial Linkages
,”
ASME J. Mech. Des.
0161-8458,
130
, p.
042301
.
17.
Cervantes-Sánchez
,
J. J.
,
Rico-Martínez
,
J. M.
, and
González-Montiel
,
G.
, 2009, “
The Differential Calculus of Screws: Theory, Geometrical Interpretation, and Applications
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
223
(
6
), pp.
1449
1468
.
18.
Rico
,
J. M.
, and
Gallardo
,
J.
, 1996, “
Acceleration Analysis, via Screw Theory, and Characterization of Singularities of Closed Chains
,”
Recent Advances in Robot Kinematics
,
J.
Lenarcic
and
V.
Parenti-Castelli
, eds.
Kluwer
,
Dordrecht
, pp.
139
148
.
19.
Zlatanov
,
D.
,
Bonev
,
I. A.
, and
Gosselin
,
C. M.
, 2002, “
Constraint Singularities of Parallel Mechanisms
,”
Proceedings of the IEEE International Conference on Robotics and Automation 2002 (ICRA'02)
, Vol.
1
, pp.
980
985
.
20.
Wohlhart
,
K.
, 2000, “
Architectural Shakiness or Architectural Mobility of Platforms
,”
Advances in Robot Kinematics
,
J.
Lenarcic
and
M. M.
Stanisic
, eds.,
Kluwer
,
Dordrecht
, pp.
365
374
.
21.
Roschel
,
O.
, and
Mick
,
S.
, 1998, “
Characterization of Architecturally Shaky Platforms
,”
Advances in Robot Kinematics: Analysis and Control
,
J.
Lenarcic
and
M. L.
Husty
, eds.,
Kluwer
,
Dordrecht
, pp.
465
474
.
22.
Müller
,
A.
, 2002, “
Higher Order Local Analysis of Singularities in Parallel Mechanisms
,”
ASME
Paper No. DETC2002/MECH-34258.
23.
Lerbet
,
J.
, and
Fayet
,
M.
, 2003, “
Singularities of Mechanisms and the Degree of Mobility
,”
Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-Body Dynamics
,
217
(
2
), pp.
111
119
.
24.
Abbaspour
,
H.
, and
Moskowitz
,
M.
, 2007,
Basic Lie Theory
,
World Scientific
,
Singapore
.
25.
Hervé
,
J.
, 1999, “
The Lie Group of Rigid Body Displacements, a Fundamental Tool for Mechanism Design
,”
Mech. Mach. Theory
0094-114X,
34
(
5
), pp.
719
730
.
26.
Selig
,
J. M.
, 1996,
Geometrical Methods in Robotics
,
Springer
,
Secaucus, NJ
.
27.
Angeles
,
J.
, 2004, “
The Qualitative Synthesis of Parallel Manipulators
,”
ASME J. Mech. Des.
0161-8458,
126
, pp.
617
624
.
28.
Rico
,
J. M.
, and
Ravani
,
B.
, 2005, “
Mobility Determination of Paradoxical Linkages
,”
ASME
Paper No. DETC2005-84936.
29.
Herve
,
J. M.
, 1978, “
Analyse Structurelle Des Mécanismes Par Groupe Des Déplacements
,”
Mech. Mach. Theory
0094-114X,
13
(
4
), pp.
437
450
.
30.
Kieffer
,
J.
, 1992, “
Manipulator Inverse Kinematics for Untimed End-Effector Trajectories With Ordinary Singularities
,”
Int. J. Robot. Res.
0278-3649,
11
(
3
), pp.
225
237
.
31.
Kieffer
,
J.
, 1994, “
Differential Analysis of Bifurcations and Isolated Singularities for Robots and Mechanisms
,”
IEEE Trans. Rob. Autom.
1042-296X,
10
(
1
), pp.
1
10
.
32.
Fernández de Bustos
,
I. F.
,
Agirrebeitia
,
J.
, and
Avilés
,
R.
, 2008, “
A Numerical Method for the Second-Order Mobility Analysis of Mechanisms
,”
Proceedings of the EUCOMES 08: The Second European Conference on Mechanism Science
,
Springer
,
New York
, pp.
87
93
.
33.
Woo
,
L.
, and
Freudenstein
,
F.
, 1970, “
Application of Line Geometry to Theoretical Kinematics and the Kinematic Analysis of Mechanical Systems
,”
J. Mech.
0022-2569,
5
, pp.
417
460
.
34.
Teng
,
C. -P.
, and
Angeles
,
J.
, 2001, “
A Sequential-Quadratic-Programming Algorithm Using Orthogonal Decomposition With Gerschgorin Stabilization
,”
ASME J. Mech. Des.
0161-8458,
123
, pp.
501
509
.
35.
Cervantes-Sánchez
,
J. J.
,
Moreno-Báez
,
M. A.
,
Rico-Martı́nez
,
J. M.
, and
González-Galván
,
E. J.
, 2004, “
A Novel Geometrical Derivation of the Lie Product
,”
Mech. Mach. Theory
0094-114X,
39
(
10
), pp.
1067
1079
.
36.
von Mises
,
R.
, 1924, “
Motorrechnung, Ein Neues Hilfsmittel Der Mechanik
,”
Z. Angew. Math. Mech.
0044-2267,
4
(
2
), pp.
155
181
.
37.
Featherstone
,
R.
, 2001, “
The Acceleration Vector of a Rigid Body
,”
Int. J. Robot. Res.
0278-3649,
20
(
11
), pp.
841
846
.
38.
Featherstone
,
R.
, 2008,
Rigid Body Dynamics Algorithms
,
Springer
,
New York
.
39.
Yefimov
,
N. V.
, and
Shenitzer
,
A.
, 1964,
Quadratic Forms and Matrices: An Introductory Approach
,
Academic
,
New York
.
40.
Haykin
,
S.
, 1991,
Adaptive Filter Theory
, 2nd ed.,
Prentice-Hall
,
Englewood Cliffs, NJ
.
41.
Beyer
,
W. H.
, 1987,
CRC Standard Mathematical Tables
, 30th ed.,
CRC
,
Boca Raton, FL
.
You do not currently have access to this content.