Environmental protection legislation, consumer interest in “green” products, a trend toward corporate responsibility and recognition of the potential profitability of salvaging operations, has resulted in increased interest in product take back. However, the cost effectiveness of product take-back operations is hampered by many factors, including the high cost of disassembly and a widely varying feedstock of dissimilar products. Two types of decisions must be made, how to carry out the disassembly process in the most efficient manner to “mine” the value-added that is still embedded in the product, and then how to best utilize that value-added once it is recovered. This paper presents a method for making those decisions. The concept of a transition matrix is integrated with mixed integer linear programming to determine the extent to which products should be disassembled and simultaneously determine the optimal end-of-life (EOL) strategy for each resultant component or subassembly. The main contribution of this paper is the simultaneous consideration of selective disassembly, multiple products, and the value added that remains in each component or subassembly. Shared disassembly operations and capacity limits are considered. An example using two cell phone products illustrates application of the model. The obtained results demonstrate the most economical level of disassembly for each cell phone and the best EOL options for each resultant module. In addition, the cell phone example shows that sharing disassembly operations between different products makes disassembly more cost effective compared with the case in which each product is disassembled separately.

1.
Feldmann
,
K.
,
Meedt
,
O.
,
Trautner
,
S.
,
Scheller
,
H.
, and
Hoffman
,
W.
, 1999, “
The Green Design Advisor: A Tool for Design for Environment
,”
J. Electron. Manuf.
0960-3131,
9
(
1
), pp.
17
28
.
2.
Linton
,
J.
, 1999, “
Electronic Products at their End-of-Life: Options and Obstacles
,”
J. Electron. Manuf.
0960-3131,
9
(
1
), pp.
29
40
.
3.
Kara
,
S.
,
Pornprasitpol
,
P.
, and
Kaebernick
,
H.
, 2005, “
A Selective Disassembly Methodology for End-of-Life Products
,”
Assem. Autom.
0144-5154,
25
(
2
), pp.
124
34
.
4.
Yu
,
Y.
,
Jin
,
K.
,
Zhang
,
H. C.
,
Ling
,
F. F.
, and
Barnes
,
D.
, 2000, “
A Decision-Making Model for Materials Management of End-of-Life Electronic Products
,”
J. Manuf. Syst.
0278-6125,
19
(
2
), pp.
94
107
.
5.
Przekop
,
L. A.
, and
Kerr
,
S.
, 2004, “
Life Cycle Tools for Future Product Sustainability
,”
Proceedings of the 2004 IEEE International Symposium on Electronics and the Environment
, pp.
23
26
.
6.
González
,
B.
, and
Adenso-Diaz
,
B.
, 2005, “
A Bill of Materials-Based Approach for End-of-Life Decision Making in Design for the Environment
,”
Int. J. Prod. Res.
0020-7543,
43
(
10
), pp.
2071
99
.
7.
Mangun
,
D.
, and
Thurston
,
D. L.
, 2002, “
Incorporating Component Reuse, Remanufacture, and Recycle Into Product Portfolio Design
,”
IEEE Trans. Eng. Manage.
0018-9391,
49
(
4
), pp.
479
90
.
8.
Park
,
P. J.
,
Tahara
,
K.
,
Jeong
,
I. T.
, and
Lee
,
K. M.
, 2006, “
Comparison of Four Methods for Integrating Environmental and Economic Aspects in the End-of-Life Stage of a Washing Machine
,”
Resour. Conserv. Recycl.
0921-3449,
48
(
1
), pp.
71
85
.
9.
Xing
,
K.
, and
Belusko
,
M.
, 2008, “
Design for Upgradability Algorithm: Configuring Durable Products for Competitive Reutilization
,”
ASME J. Mech. Des.
0161-8458,
130
(11), p.
111102
.
10.
Bufardi
,
A.
,
Gheorghe
,
R.
,
Kiritsis
,
D.
, and
Xirouchakis
,
P.
, 2004, “
Multicriteria Decision-Aid Approach for Product End-of-Life Alternative Selection Source
,”
Int. J. Prod. Res.
0020-7543,
42
(
16
), pp.
3139
57
.
11.
Pandey
,
V.
, and
Thurston
,
D.
, 2009, “
Effective Age of Remanufactured Products: An Entropy Approach
,”
ASME J. Mech. Des.
0161-8458,
131
(
3
), p.
031008
.
12.
Pandey
,
V.
, and
Thurston
,
D.
, 2007, “
Non-Dominated Strategies for Decision Based Design for Component Reuse
Proceedings of the 2007 ASME IDETC/CIE
, Vol.
3
, Part A, pp.
471
481
.
13.
Gerner
,
S.
,
Kobeissi
,
A.
,
David
,
B.
,
Binder
,
Z.
, and
Descotes-Genon
,
B.
, 2005, “
Integrated Approach for Disassembly Processes Generation and Recycling Evaluation of an End-of-Life Product
,”
Int. J. Prod. Res.
0020-7543,
43
(
1
), pp.
195
222
.
14.
Johnson
,
M. R.
, and
Wang
,
M. H.
, 1998, “
Economical Evaluation of Disassembly Operations for Recycling, Remanufacturing and Reuse
,”
Int. J. Prod. Res.
0020-7543,
36
(
12
), pp.
3227
52
.
15.
Zhang
,
H. C.
, and
Kuo
,
T. C.
, 1996, “
Graph-Based Approach to Disassembly Model for End-of-Life Product Recycling
,”
Proceedings of the IEEE/CPMT International Electronics Manufacturing Technology Symposium
, pp.
247
254
.
16.
Srinivasan
,
H.
, and
Gadh
,
R.
, 2000, “
Efficient Geometric Disassembly of Multiple Components From an Assembly Using Wave Propagation
,”
ASME J. Mech. Des.
0161-8458,
122
(
2
), pp.
179
184
.
17.
Gonzalez-Torre
,
B.
, and
Adenso-Diaz
,
B.
, 2004, “
Optimizing Decision Making at the End of Life of a Product
,”
Proc. SPIE
0277-786X,
5262
(
1
), pp.
40
50
.
18.
Kwak
,
M. J.
,
Hong
,
Y. S.
, and
Cho
,
N. W.
, 2007, “
Eco-Architecture Analysis as a Method of End-of-Life Decision Making for Sustainable Product Design
,”
Proceedings of the 2007 ASME IDETC/CIE
, Vol.
3
, Part A, pp.
499
511
.
19.
Lambert
,
A. J. D.
, 1999, “
Linear Programming in Disassembly/Clustering Sequence Generation
,”
Comput. Ind. Eng.
0360-8352,
36
(
4
), pp.
723
38
.
20.
Tang
,
Y.
,
Zhou
,
M. C.
,
Zussman
,
E.
, and
Caudill
,
R.
, 2000, “
Disassembly Modeling, Planning, and Application: A Review
,”
IEEE J. Rob. Autom.
0882-4967,
3
, pp.
2197
2202
.
21.
Zwingmann
,
X.
,
Ait-Kadi
,
D.
,
Coulibaly
,
A.
, and
Mutel
,
B.
, 2008, “
Optimal Disassembly Sequencing Strategy Using Constraint Programming Approach
,”
J. Qual. Maint. Eng.
1355-2511,
14
(
1
), pp.
46
58
.
22.
Kang
,
C. M.
,
Kwak
,
M. J.
,
Cho
,
N. W.
, and
Hong
,
Y. S.
, 2009, “
Automatic Derivation of Transition Matrix for End-of-Life Decision Making
,”
Int. J. Prod. Res.
0020-7543, published online 1 May 2009.
23.
Lambert
,
A. J. D.
, 2001, “
Automatic Determination of Transition Matrices in Optimal Disassembly Sequence Generation
,”
Proceedings of the 2001 IEEE International Symposium on Assembly and Task Planning
, pp.
220
225
.
24.
Kang
,
C. M.
,
Cho
,
N. W.
,
Kwak
,
M. J.
, and
Hong
,
Y. S.
, 2008, “
An Algorithm for Deriving Transition Matrix Based on Product Architecture
,”
Proceedings of the 2008 ASME IDETC/CIE
, Vol.
5
, p
315
321
.
25.
Monteiro
,
M. R.
,
Moreira
,
D. G. G.
,
Chinelatto
,
M. A.
,
Nascente
,
P. A. P.
, and
Alcantara
,
N. G.
, 2007, “
Characterization and Recycling of Polymeric Components Present in Cell Phones
,”
J. Polym. Environ.
1566-2543,
15
(
3
), pp.
195
199
.
26.
Bhuie
,
A. K.
,
Ogunseitan
,
O. A.
,
Saphores
,
J. -D. M.
, and
Shapiro
,
A. A.
, 2004, “
Environmental and Economic Trade-Offs in Consumer Electronic Products Recycling: A Case Study of Cell Phones and Computers
,”
Proceedings of the 2004 IEEE International Symposium on Electronics and the Environment
, pp.
74
79
.
28.
Gupta
,
S. M.
,
Erbis
,
E.
, and
McGovern
,
S. M.
, 2004, “
Disassembly Sequencing Problem: A Case Study of a Cell Phone
,”
Proc. SPIE
0277-786X,
5583
, pp.
43
52
.
29.
Shalaby
,
M.
, and
Saitou
,
K.
, 2008, “
Design for Disassembly With High-Stiffness Heat-Reversible Locator-Snap Systems
,”
ASME J. Mech. Des.
0161-8458,
130
(
12
), p.
121701
.
You do not currently have access to this content.