The decisions designers make during conceptual design can have a large impact on the success of a project. Conceptual design decisions can be challenging because the imprecise nature of design concepts make them difficult to model. Prior literature exists on using Pareto sets to model design concepts abstractly in the space of decision attributes. However, this approach has limitations when the concept under consideration is a component of a larger system. The need to relate component-level decision attributes to system-level decision objectives can lead to a violation of the assumptions underlying classical Pareto dominance. The main contribution of this article is a new dominance criterion, called parameterized Pareto dominance, which is applicable in such situations. It is a generalization of the classical dominance rule and is found to be sound from a decision-theoretic perspective. A secondary contribution is the articulation of a generalized methodology for constructing concept models based on classical or parameterized Pareto sets using either observational or model-generated data. The modeling procedure, including the new dominance criterion, is demonstrated on observational data about hydraulic cylinders. The question of whether a parameterized Pareto set can be an adequate representation of a component-level design concept is evaluated on a gearbox conceptual design problem for which the component-level decision is subordinate to system-level vehicle design problem.

1.
Hsu
,
W.
, and
Woon
,
I.
, 1998, “
Current and Future Research in the Conceptual Design of Mechanical Products
,”
Comput.-Aided Des.
0010-4485,
30
(
5
), pp.
377
389
.
2.
Pahl
,
G.
, and
Beitz
,
W.
, 1996,
Engineering Design: A Systematic Approach
,
Springer-Verlag
,
London
.
3.
Buede
,
D. M.
, 2000,
The Engineering Design of Systems
,
Wiley
,
New York
.
4.
Forsberg
,
K.
, and
Mooz
,
H.
, 1992, “
The Relationship of Systems Engineering to the Project Cycle
,”
Eng. Manage. J.
1042-9247,
4
(
3
), pp.
36
43
.
5.
Sage
,
A. P.
, and
Armstrong
,
J. E.
, Jr.
, 2000,
Introduction to Systems Engineering
,
Wiley
,
New York
.
6.
Wertz
,
J. R.
, and
Larson
,
W. J.
, eds., 1999, “
The Space Mission Analysis and Design Process
,”
Space Mission Analysis and Design
,
Microcosm
,
Torrance, CA
.
7.
Clemen
,
R. T.
, 1996,
Making Hard Decisions: An Introduction to Decision Analysis
,
Duxbury
,
Pacific Grove, CA
.
8.
Keeney
,
R. L.
, and
Raiffa
,
H.
, 1993,
Decisions With Multiple Objectives
,
Cambridge University Press
,
Cambridge, UK
.
9.
Altuzarra
,
O.
,
Hernandez
,
A.
,
Salgado
,
O.
, and
Angeles
,
J.
, 2009, “
Multiobjective Optimum Design of a Symmetric Parallel Schönflies-Motion Generator
,”
ASME J. Mech. Des.
0161-8458,
131
(
3
), p.
031002
.
10.
Rao
,
A. R.
,
Scanlan
,
J. P.
, and
Keane
,
A. J.
, 2007, “
Applying Multiobjective Cost and Weight Optimization to the Initial Design of Turbine Disks
,”
ASME J. Mech. Des.
0161-8458,
129
(
12
), pp.
1303
1310
.
11.
Kudikala
,
R.
,
Kalyanmoy
,
D.
, and
Bhattacharya
,
B.
, 2009, “
Multi-Objective Optimization of Piezoelectric Actuator Placement for Shape Control of Plates Using Genetic Algorithms
,”
ASME J. Mech. Des.
0161-8458,
131
(
9
), p.
091007
.
12.
Mattson
,
C. A.
, and
Messac
,
A.
, 2003, “
Concept Selection Using S-Pareto Frontiers
,”
AIAA J.
0001-1452,
41
(
6
), pp.
1190
1198
.
13.
Mattson
,
C. A.
, and
Messac
,
A.
, 2005, “
Pareto Frontier Based Concept Selection Under Uncertainty, With Visualization
,”
Optim. Eng.
1389-4420,
6
(
1
), pp.
85
115
.
14.
Gurnani
,
A.
,
Ferguson
,
S.
,
Lewis
,
K. E.
, and
Donndelinger
,
J.
, 2006, “
A Constraint-Based Approach to Feasibility Assessment in Preliminary Design
,”
Artif. Intell. Eng. Des. Anal. Manuf.
0890-0604,
20
(
4
), pp.
351
367
.
15.
Ferguson
,
S.
,
Gurnani
,
A.
,
Donndelinger
,
J.
, and
Lewis
,
K.
, 2005, “
A Study of Convergence and Mapping in Preliminary Vehicle Design
,”
International Journal of Vehicle Systems Modelling and Testing
,
1
(
1/2/3
), pp.
192
215
. 0002-7820
16.
Hunt
,
B. J.
,
Blouin
,
V. Y.
, and
Wiecek
,
M. M.
, 2007, “
Modeling Relative Importance of Design Criteria With a Modified Pareto Preference
,”
ASME J. Mech. Des.
0161-8458,
129
(
9
), pp.
907
914
.
17.
Malak
,
R. J.
, 2008, “
Using Parameterized Efficient Sets to Model Alternatives for Systems Design Decisions
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.
18.
Fishburn
,
P. C.
, 1965,
Decision and Value Theory
,
Wiley
,
New York
.
19.
Von Neumann
,
J.
, and
Morgenstern
,
O.
, 1944,
Theory of Games and Economic Behavior
,
Princeton University Press
,
Princeton, NJ
.
20.
Malak
,
R. J.
, and
Paredis
,
C. J. J.
, 2008, “
Modeling Design Concepts Under Risk and Uncertainty Using Parameterized Efficient Sets
,”
SAE World Congress
, Detroit, MI.
21.
Pugh
,
S.
, 1991,
Total Design: Integrated Methods for Successful Product Engineering
,
Addison-Wesley
,
Reading, MA
.
22.
Saaty
,
T. L.
, 1990, “
How to Make a Decision: The Analytical Hierarchy Process
,”
Eur. J. Oper. Res.
0377-2217,
48
(
1
), pp.
9
26
.
23.
Saari
,
D. G.
, 2000, “
Mathematical Structure of Voting Paradoxes: 1. Pairwise Votes
,”
J. Econ. Theory
0022-0531,
15
(
1
), pp.
1
53
.
24.
Hazelrigg
,
G. A.
, 2003, “
Validation of Engineering Design Alternative Selection Methods
,”
Eng. Optimiz.
0305-215X,
35
(
2
), pp.
103
120
.
25.
Mullur
,
A. A.
,
Mattson
,
C. A.
, and
Messac
,
A.
, 2003, “
Pitfalls of the Typical Construction of Decision Matrices for Concept Selection
,”
41st Aerospace Sciences Meeting and Exhibit
, Reno, NV.
26.
Barton
,
J. A.
, and
Love
,
D. M.
, 2000, “
Design Decision Chains as a Basis for Design Analysis
,”
J. Eng. Design
0954-4828,
11
(
3
), pp.
283
297
.
27.
Barton
,
J. A.
,
Love
,
D. M.
, and
Taylor
,
G. D.
, 2001, “
Evaluating Design Implementation Strategies Using Enterprise Simulation
,”
Int. J. Prod. Econ.
0925-5273,
72
(
3
), pp.
285
299
.
28.
Ward
,
A. C.
, 1989, “
A Theory of Quantitative Inference Applied to a Mechanical Design Compiler
,” Ph.D. thesis, MIT, Boston.
29.
Ward
,
A. C.
,
Liker
,
J. K.
,
Cristiano
,
J. J.
, and
Sobek Ii
,
D. K.
, 1995, “
The Second Toyota Paradox: How Delaying Decisions Can Make Better Cars Faster
,”
Sloan Manage. Rev.
0019-848X,
36
(
3
), pp.
43
61
.
30.
Sobek Ii
,
D. K.
,
Ward
,
A. C.
, and
Liker
,
J. K.
, 1999, “
Toyota’s Principles of Set-Based Concurrent Engineering
,”
Sloan Manage. Rev.
0019-848X,
40
(
2
), pp.
67
83
.
31.
Nahm
,
Y. -E.
, and
Ishikawa
,
H.
, 2004, “
Integrated Product and Process Modeling for Collaborative Design Environment
,”
Concurr. Eng. Res. Appl.
1063-293X,
12
(
1
), pp.
5
23
.
32.
Parunak
,
H. V. D.
,
Ward
,
A. C.
,
Fleischer
,
M.
, and
Sauter
,
J.
, 1997, “
A Marketplace of Design Agents for Distributed Concurrent Set-Based Design
,”
ISPE/CE97: Fourth ISPE International Conference on Concurrent Engineering: Research and Applications
, Troy, MI, pp.
287
293
.
33.
Kyburg
,
H. E.
, and
Pittarelli
,
M.
, 1996, “
Set-Based Bayesianism
,”
IEEE Trans. Syst. Man Cybern.
0018-9472,
26
(
3
), pp.
324
339
.
34.
Rekuc
,
S.
,
Aughenbaugh
,
J. M.
,
Bruns
,
M.
, and
Paredis
,
C. J. J.
, 2007, “
Eliminating Design Alternatives Based on Imprecise Information
,”
Society of Automotive Engineering Transactions
.
35.
Malak
,
R. J.
,
Aughenbaugh
,
J. M.
, and
Paredis
,
C. J. J.
, 2009, “
Multi-Attribute Utility Analysis in Set-Based Conceptual Design
,”
Comput.-Aided Des.
0010-4485,
41
(
3
), pp.
214
227
.
36.
Chen
,
W.
,
Allen
,
J. K.
,
Marvis
,
D. N.
, and
Mistree
,
F.
, 1996, “
A Concept Exploration Method for Determining Robust Top-Level Specifications
,”
Eng. Optimiz.
0305-215X,
26
(
2
), pp.
137
158
.
37.
Chen
,
W.
,
Allen
,
J. K.
, and
Mistree
,
F.
, 1997, “
A Robust Concept Exploration Method for Enhancing Productivity in Concurrent Systems Design
,”
Concurr. Eng. Res. Appl.
1063-293X,
5
(
3
), pp.
203
217
.
38.
Wood
,
W. H.
, and
Agogino
,
A. M.
, 2005, “
Decision-Based Conceptual Design: Modeling and Navigation of Heterogeneous Design Spaces
,”
ASME J. Mech. Des.
0161-8458,
127
(
1
), pp.
2
11
.
39.
Wood
,
W. H.
, and
Dong
,
H.
, 2006, “
Generating Design Alternatives Across Abstraction Levels
,”
Decision Making in Engineering Design
,
K. E.
Lewis
et al.
, eds.,
ASME
,
New York
.
40.
Stump
,
G.
,
Yukish
,
M.
,
Simpson
,
T. W.
, and
O’hara
,
J. J.
, 2004, “
Trade Space Exploration of Satellite Datasets Using Design by Shopping
,”
IEEE Aerospace Conference
, Vol.
6
, pp.
3885
3895
.
41.
Lotov
,
A. V.
,
Bushenkov
,
V. A.
, and
Kamenev
,
G. K.
, 2004,
Interactive Decision Maps, Applied Optimization
,
Kluwer Academic
,
Boston
.
42.
Wilson
,
B.
,
Cappelleri
,
D.
,
Simpson
,
T. W.
, and
Frecker
,
M.
, 2001, “
Efficient Pareto Fronier Exploration Using Surrogate Approximations
,”
Optim. Eng.
1389-4420,
2
(
1
), pp.
31
50
.
43.
Messac
,
A.
,
Ismail-Yahaya
,
A.
, and
Mattson
,
C. A.
, 2003, “
The Normalized Normal Constraint Method for Generating the Pareto Frontier
,”
Struct. Multidiscip. Optim.
1615-147X,
25
(
2
), pp.
86
98
.
44.
Messac
,
A.
, and
Mattson
,
C. A.
, 2002, “
Generating Well-Distributed Sets of Pareto Points for Engineering Design Using Physical Programming
,”
Optim. Eng.
1389-4420,
3
(
4
), pp.
431
450
.
45.
Hand
,
D. J.
,
Mannila
,
H.
, and
Smyth
,
P.
, 2001,
Principles of Data Mining
,
MIT Press
,
Cambridge, MA
.
46.
Rygielski
,
C.
,
Wang
,
J. -C.
, and
Yen
,
D.
, 2002, “
Data Mining Techniques for Customer Relationship Management
,”
Technol. Soc.
0160-791X,
24
(
4
), pp.
483
502
.
47.
Geisser
,
S.
, 1982, “
Aspects of the Predictive and Estimative Approaches in the Determination of Probabilities
,”
Biometrics
0006-341X,
38
(
March
), pp.
75
85
.
48.
Geisser
,
S.
, 1993,
Predictive Inference: An Introduction
,
Chapman and Hall
,
New York
.
49.
Han
,
J.
, and
Kamber
,
M.
, 2001,
Data Mining: Concepts and Techniques
,
Morgan Kaufmann
,
San Francisco, CA
.
50.
Kutner
,
M. H.
,
Nachtsheim
,
C. J.
,
Neter
,
J.
, and
Li
,
W.
, 2005,
Applied Linear Statistical Models
,
McGraw-Hill
,
Irwin, New York
.
51.
Barber
,
C. B.
,
Dobkin
,
D. P.
, and
Huhdanpaa
,
H. T.
, 1996, “
The Quickhull Algorithm for Convex Hulls
,”
ACM Trans. Math. Softw.
0098-3500,
22
(
4
), pp.
469
483
.
52.
Malak
,
R. J.
, and
Paredis
,
C. J. J.
, 2009, “
Using Support Vector Machines to Formalize the Valid Input Domain of Models in Data-Driven Predictive Modeling for Systems Design
,”
ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE 2009)
, San Diego, CA.
53.
Pareto
,
V.
, 1971,
Manual of Political Economy
,
Macmillan
,
New York
.
54.
Norton
,
R. L.
, 2000,
Machine Design: An Integrated Approach
,
Prentice Hall
,
Upper Saddle River, NJ
.
55.
Lophaven
,
S. N.
,
Nielsen
,
H. B.
, and
Sondergaard
,
J.
, 2002, “
Dace: A Matlab Kriging Toolbox
,” Technical Report No. IMM-TR-2002-12, Technical University of Denmark.
56.
Bruns
,
M.
, 2006, “
Propagation of Imprecise Probabilities Through Black Box Models
,” MS thesis, Georgia Institute of Technology, Atlanta, GA.
57.
Malak
,
R. J.
,
Tucker
,
L.
, and
Paredis
,
C. J. J.
, 2008, “
Composing Tradeoff Models for Multi-Attribute System-Level Decision Making
,”
ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE 2008)
, New York, NY.
You do not currently have access to this content.