This work focuses on the multi-objective optimization of a compliant-mechanism accelerometer. The design objective is to maximize the sensitivity of the accelerometer in its sensing direction, while minimizing its sensitivity in all other directions. In addition, this work proposes a novel compliant hinge intended to reduce the stress concentration in compliant mechanisms. The paper starts with a brief description of the new compliant hinge, the Lamé-shaped hinge, followed by the formulation of the aposteriori multi-objective optimization of the compliant accelerometer. By using the normalized constrained method, an even distribution of the Pareto frontier is found. The paper also provides several optimum solutions on a Pareto plot, as well as the CAD model of the selected solution.

1.
MacDonald
,
G. A.
, 1990, “
Review of Low Cost Accelerometers for Vehicle Dynamics
,”
Sens. Actuators, A
0924-4247,
21
, pp.
303
307
.
2.
Senturia
,
S.
, 2001,
Microsystem Design
, 3rd ed.,
Kluwer
,
Boston, MA
.
3.
Yazdi
,
N.
,
Najafi
,
K.
, and
Salian
,
A. S.
, 2003, “
A High-Sensitivity Silicon Accelerometer With a Folded-Electrode Structure
,”
J. Microelectromech. Syst.
1057-7157,
12
(
4
), pp.
479
486
.
4.
Suna
,
C.
,
Wang
,
C.
, and
Fang
,
W.
, 2008, “
On the Sensitivity Improvement of CMOS Capacitive Accelerometer
,”
Sens. Actuators, A
0924-4247,
141
, pp.
347
352
.
5.
Cardou
,
P.
,
Pasini
,
D.
, and
Angeles
,
J.
, 2008, “
Lumped Elastodynamic Model for MEMS: Formulation and Validation
,”
J. Microelectromech. Systems
,
17
(
4
), pp.
948
961
.
6.
Lobontiu
,
N.
, 2003,
Compliant Mechanisms: Design of Flexure Hinges
,
CRC
,
Boca Raton, FL
.
7.
Howell
,
L.
, 2001,
Compliant Mechanisms
,
Wiley
,
New York
.
8.
Moon
,
Y.
,
Trease
,
P.
, and
Kota
,
S.
, 2002, “
Design of Large-Displacement Compliant Joints
,”
Proceedings of the MECH 27th Biennial Mechanisms and Robotics Conference
, Montreal, Canada, Vol.
3
.
9.
Deepak
,
S.
,
Dinesh
,
M.
,
Sahu
,
D.
, and
Ananthasuresh
,
G.
, 2009, “
A Comparative Study of the Formulations and Benchmark Problems for the Topology Optimization of Compliant Mechanisms
,”
ASME J. Mech. Rob.
1942-4302,
1
, p.
011003
.
10.
Frecker
,
M.
,
Ananthasuresh
,
G.
,
Nishiwaki
,
S.
,
Kikuchi
,
N.
, and
Kota
,
S.
, 1997, “
Topological Synthesis of Compliant Mechanisms Using Multi-Criteria Optimization
,”
ASME J. Mech. Des.
0161-8458,
119
, pp.
238
245
.
11.
Mankame
,
N.
, and
Ananthasuresh
,
G.
, 2004, “
Topology Synthesis of Electrothermal Compliant Mechanisms Using Line Elements
,”
Struct. Multidiscip. Optim.
1615-147X,
26
, pp.
209
218
.
12.
Werme
,
M.
, 2007, “
Designing Compliant Mechanisms With Stress Constraints Using Sequential Linear Integer Programming
,”
Proceedings of the Seventh World Congress on Structural and Multidisciplinary Optimization
,
Seoul, South Korea
, pp.
1862
1871
.
13.
Mechkour
,
H.
,
Jouve
,
F.
,
Rotinat-Libersa
,
C.
,
Bidard
,
C.
, and
Perrot
,
Y.
, 2007, “
Optimal Design of Compliant Mechanisms by Level Set and Flexible Building Blocks Methods
,”
Proceedings of the Seventh World Congress on Structural and Multidisciplinary Optimization
,
Seoul, South Korea
, pp.
1898
1907
.
14.
Messac
,
A.
,
Ismail-Yahaya
,
A.
, and
Mattson
,
C.
, 2003, “
The Normalized Normal Constraint Method for Generating the Pareto Frontier
,”
Struct. Multidiscip. Optim.
1615-147X,
25
(
2
), pp.
86
98
.
15.
De Bona
,
F.
, and
Munteanu
,
M. G.
, 2005,
Optimized Flexural Hinges for Compliant Micromechanisms
,
Springer Science
,
New York
, Vol.
44
, pp.
163
174
.
16.
Cardou
,
P.
, and
Angeles
,
J.
, 2007, “
Simplectic Architectures for True Multi-Axial Accelerometers: A Novel Application of Parallel Robots
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Rome, Italy
, pp.
181
186
.
17.
Kreyszig
,
E.
, 1997,
Advanced Engineering Mathematics
, 8th ed.,
Wiley
,
New York
.
18.
Angeles
,
J.
, 2004, “
The Qualitative Synthesis of Parallel Manipulators
,”
ASME J. Mech. Des.
0161-8458,
126
(
4
), pp.
617
624
.
19.
Derderian
,
A. M.
,
Howell
,
L.
,
Murphy
,
M. D.
,
Lyon
,
S. M.
, and
Pack
,
S. D.
, 1996, “
Compliant Parallel-Guiding Mechanisms
,”
Proceedings of the 1996 ASME Design Engineering Technical Conference
,
Irvine, CA
, Vol.
96
.
20.
Smith
,
S.
,
Badami
,
V.
,
Dale
,
J.
, and
Xu
,
Y.
, 1997, “
Elliptical Flexure Hinges
,”
Rev. Sci. Instrum.
0034-6748,
68
(
3
), pp.
1474
1483
.
21.
Wu
,
Y.
, and
Zhou
,
Z.
, 2002, “
Design Calculations for Flexure Hinges
,”
Rev. Sci. Instrum.
0034-6748,
73
(
8
), pp.
3101
3106
22.
Williams
,
M.
, 1952, “
Stress Singularities Resulting From Various Boundary Conditions in Angular Corners of Plates in Extension
,”
ASME J. Appl. Mech.
0021-8936,
74
, pp.
526
528
.
23.
Dunn
,
M.
,
Suwito
,
W.
, and
Cunningham
,
S.
, 1997, “
Stress Intensities at Notch Singularities
,”
Eng. Fract. Mech.
0013-7944,
57
(
4
), pp.
417
430
.
24.
Pedersen
,
P.
, 2007, “
Some Benchmarks for Optimized Shapes With Stress Concentration
,”
Proceedings of the Seventh World Congress on Structural and Multidisciplinary Optimization
,
Seoul, South Korea
, pp.
1623
1631
.
25.
Desrochers
,
S.
, 2008, “
Optimum Design of Simplicial Uniaxial Accelerometers
,” MS thesis, McGill University, Montreal, Canada.
26.
Neuber
,
H.
, 1945,
Theory of Notch Stresses: Principles for Exact Stress Calculation
,
Edwards Brothers
,
Ann Arbor, MI
.
27.
Loria
,
G.
, 1902,
Spezielle Algebraische und Transscendente Ebene Kurven: Theorie und Geschichte
,
BG Teubner
,
Leipzig
.
28.
Gray
,
A.
, 1993,
Modern Differential Geometry of Curves and Surfaces
,
CRC
,
Boca Raton, FL
.
29.
Khan
,
W. A.
, 2007, “
The Conceptual Design of Robotic Architectures Using Complexity Criteria
,” Ph.D. thesis, McGill University, Montreal, Canada.
30.
Nelder
,
J.
, and
Mead
,
R.
, 1965, “
A Simplex Method for Function Minimization
,”
Comput. J.
0010-4620,
4
, pp.
308
313
.
31.
Rahman
,
M.
, 2006, “
An Intelligent Moving Object Optimization Algorithm for Design Problems With Mixed Variable, Mixed Constraints, and Multiple Objectives
,”
Struct. Multidiscip. Optim.
1615-147X,
32
, pp.
40
58
.
You do not currently have access to this content.